

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Broadcasting with Nodes of Limited Memory

By: Saber Gholami Supervisor: Professor Hovhannes Harutyunyan

Concordia University, Department of Computer Science and Software Engineering

April 1st, 2022

Outline

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Introduction

2 Preliminaries and Literature Review

3 Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Outline

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- Growth of using computer networks,
- Great attention to all major problems in this area,
- Information dissemination,
- Broadcasting:
 - Process of distributing a message starting from a single node (*originator*) to all other nodes of the network using the network's links.

Outline

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works Introduction

2 Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Preliminaries

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • The network: G = (V, E), originator $u \in V$.

Preliminaries

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- The network: G = (V, E), originator $u \in V$.
- $B_{cl}(u, G)$: minimum time required to finish the broadcasting from u.
- $B_{cl}(G) = \max\{B_{cl}(u,G)|u \in V(G)\}$
 - ♦ For any graph: $B_{cl}(G) \ge \lceil \log n \rceil$

Preliminaries

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • The network: G = (V, E), originator $u \in V$.

• $B_{cl}(u, G)$: minimum time required to finish the broadcasting from u.

- $B_{cl}(G) = \max\{B_{cl}(u,G)|u \in V(G)\}$
 - ♦ For any graph: $B_{cl}(G) \ge \lceil \log n \rceil$
- Two major problems in this area:
 - ◊ Broadcast time problem,
 - ♦ Network design.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Literature Review - Broadcast time problem

- Finding $B_{cl}(u, G)$ or $B_{cl}(G)$,
- Broadcast scheme: ordering of the neighbours of each vertex, depending on the originator:
 - ◊ u: originator,
 - \diamond once v gets informed, it will follow its list I_v^u ,
 - \diamond Each vertex has to maintain up to |V| different lists and know the originator to perform broadcasting.

[1] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing, 10(4):692-701, 1981.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Literature Review - Broadcast time problem

- Finding $B_{cl}(u, G)$ or $B_{cl}(G)$,
- Broadcast scheme: ordering of the neighbours of each vertex, depending on the originator:
 - ◊ u: originator,
 - \diamond once v gets informed, it will follow its list I_v^u ,
 - \diamond Each vertex has to maintain up to |V| different lists and know the originator to perform broadcasting.
- NP-Complete in arbitrary graphs [1],
- Directions to follow:
 - ◊ Exact solution for a specific graph,
 - ◊ Heuristic,
 - ◊ Approximation algorithms.

[1] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing, 10(4):692–701, 1981.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Literature Review - Broadcast time problem - cont.

• Broadcasting with universal lists:

 \diamond Each vertex v has a single list I_v to follow, regardless of the originator.

 Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..
 Disk, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Literature Review - Broadcast time problem - cont.

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list I_v to follow, regardless of the originator.
- Two sub-models:
 - \diamond Non-adaptive $B_{na}(G)$: send to all vertices on the list,
 - ♦ Adaptive $B_a(G)$: skip the ones you received from!

 Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..
 Disk, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Literature Review - Broadcast time problem - cont.

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list I_v to follow, regardless of the originator.
- Two sub-models:
 - \diamond Non-adaptive $B_{na}(G)$: send to all vertices on the list,
 - ♦ Adaptive $B_a(G)$: skip the ones you received from!
- Introduced indirectly by Slater [1]; for any Tree, $B_{cl}(T) = B_a(T)$.
- Diks and Pelc [2] distinguished between adaptive and non-adaptive models,
 Also proposed several broadcast schemes for different graphs
- Long list of research ...

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701.

[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

Literature Review - Network Design

Introduction

Preliminaries and Literature Review

Contribution

- Fully-adaptive Model
- Broadcast graphs under fully-adaptive Model
- Results on fully-adaptive model
- Results on non-adaptive model

- Graph G on n vertices is a broadcast graph (bg) under classical model if B_{cl}(G) = [log n],
- A bg with minimum number of edges is called a minimum broadcast graph (mbg),
- The number of edges of an *mbg* on *n* vertices: B(n) or $B^{(cl)}(n)$.

Literature Review - Network Design - cont.

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- $B^{(cl)}(n)$ is known for very few n,
- Exact values:
 - $\diamond n \leq$ 32, except for 23, 24, 25.
 - $\diamond n = 2^k$, Hypercubes | Knodel Graph
 - ♦ $n = 2^k 2$, Knodel Graph
- Several upper bounds and lower bounds ...
- No result on universal lists model!

Outline

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works Introduction

Preliminaries and Literature Review

3 Contribution

Fully-adaptive Model Broadcast graphs under fully-adaptive Model Results on fully-adaptive model Results on non-adaptive model

Fully-adaptive Model

- ntroduction
- Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

• Another sub-model for universal lists,

- A universal list L_u is maintained at each vertex u,
- Once informed, follow the list and skip all informed vertices!
 - ♦ Similarly to the classical model: No unnecessary calls!

Fully-adaptive Model

- ntroduction
- Preliminaries and Literature Review

Contribution

Fully-adaptive Model

- Broadcast graphs under fully-adaptive Model
- Results on fully-adaptive model
- Results on non-adaptive model

- Another sub-model for universal lists,
- A universal list L_u is maintained at each vertex u,
- Once informed, follow the list and skip all informed vertices!
 - ◊ Similarly to the classical model: No unnecessary calls!
- Theorem 3.1. $B_{cl}(G) \leq B_{fa}(G) \leq B_a(G) \leq B_{na}(G)$, for any graph G.

Model	Symbol	No. of unnecessary calls	Space Complexity	Speed
Non-adaptive	$B_{na}(G)$	Many	Very Low	Very Slow
Adaptive	$B_a(G)$	Few	Low	Slow
Fully Adaptive	$B_{fa}(G)$	0	Moderate	Moderate
Classical	$B_{cl}(G)$	0	Very High	Very Fast

Fully-adaptive Model - Definitions

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- A broadcast scheme: Matrix $\sigma_{n \times \Delta}$,
 - \diamond Row *i* of σ corresponds to an ordering for vertex v_i .
- Set of all possible schemes: Σ .

Fully-adaptive Model - Definitions

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- A broadcast scheme: Matrix $\sigma_{n \times \Delta}$,
 - \diamond Row *i* of σ corresponds to an ordering for vertex v_i .
- Set of all possible schemes: Σ .
- Let $M \in \{na, a, fa\}$ be a model:
 - ♦ $B_M^{\sigma}(v, G)$: the time steps needed to inform all the vertices in G from v while following σ under M,
 - $\diamond \ B^{\sigma}_{M}(G) = \max_{v \in V} \{B^{\sigma}_{M}(v,G)\},\$
 - $\diamond \ B_{\mathcal{M}}(G) = \min_{\sigma \in \Sigma} \{B^{\sigma}_{\mathcal{M}}(G)\}.$

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	<i>V</i> 4	v_1	Null			
V ₃	<i>v</i> ₂	V ₆	<i>V</i> 5	Null			
V4	<i>v</i> ₂	v ₆	<i>V</i> 8	<i>V</i> 7			
<i>v</i> 5	V ₃	v ₃ Null		Null			
V ₆	V3	<i>V</i> 7	V4	Null			
<i>V</i> 7	v ₆	<i>V</i> 4	Null	Null			
V ₈	<i>V</i> 4	Null	Null	Null			

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	<i>V</i> 4	v_1	Null			
V ₃	<i>v</i> ₂	V ₆	<i>V</i> 5	Null			
<i>V</i> 4	<i>v</i> ₂	V ₆	V8	<i>V</i> 7			
<i>V</i> 5	V ₃	v ₃ Null		Null			
<i>V</i> 6	V ₃	<i>V</i> 7	<i>V</i> 4	Null			
V ₇	v ₆	<i>V</i> 4	Null	Null			
<i>V</i> 8	<i>V</i> 4	Null	Null	Null			

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	V4	v_1	Null			
V ₃	<i>v</i> ₂	V ₆	<i>V</i> 5	Null			
<i>V</i> 4	<i>V</i> ₂ <i>V</i> ₆		V8	<i>V</i> 7			
<i>V</i> 5	V ₃	v ₃ Null		Null			
<i>v</i> ₆	V ₃	<i>V</i> 7	<i>V</i> 4	Null			
V7	v ₆	<i>V</i> 4	Null	Null			
V ₈	<i>V</i> 4	Null	Null	Null			

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	V4	v_1	Null			
V3	<i>v</i> ₂	V ₆	<i>V</i> 5	Null			
<i>V</i> 4	<i>v</i> ₂	<i>v</i> ₂ <i>v</i> ₆		<i>V</i> 7			
<i>V</i> 5	V ₃	Null	Null	Null			
<i>v</i> ₆	V3	<i>V</i> 7	<i>V</i> 4	Null			
V7	v ₆	<i>V</i> 4	Null	Null			
<i>V</i> 8	<i>V</i> 4	Null	Null	Null			

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	<i>V</i> 4	v_1	Null			
V3	<i>v</i> ₂	<i>v</i> ₆	<i>V</i> 5	Null			
<i>V</i> 4	<i>v</i> ₂	<i>V</i> ₂ <i>V</i> ₆		<i>V</i> 7			
<i>V</i> 5	V ₃	Null	Null	Null			
<i>v</i> ₆	V3	<i>V</i> 7	<i>V</i> 4	Null			
V7	v ₆	<i>V</i> 4	Null	Null			
<i>V</i> 8	<i>V</i> 4	Null	Null	Null			

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	<i>V</i> 4	<i>v</i> ₁	Null			
V3	<i>v</i> ₂	V ₆	<i>V</i> 5	Null			
<i>V</i> 4	<i>V</i> ₂ <i>V</i> ₆		<i>v</i> 8	<i>V</i> 7			
<i>V</i> 5	V ₃	v ₃ Null		Null			
<i>V</i> 6	V3	<i>V</i> 7	V4	Null			
V7	v ₆	<i>V</i> 4	Null	Null			
V ₈	<i>V</i> 4	Null	Null	Null			

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

• $B_{fa}^{\sigma}(v_1, G) = 4$, while $B_a^{\sigma}(v_1, G) = 5$ and $B_{na}^{\sigma}(v_1, G) = 6$.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- ◊ Unique and heavy message,
- ♦ The message: header + payload,

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- ♦ Unique and heavy message,
- ◊ The message: header + payload,
- Architecture:
 - How to know the state of each neighbour?
 - ♦ Push model,
 - ♦ Pull model,

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- ♦ Unique and heavy message,
- ◊ The message: header + payload,
- Architecture:
 - How to know the state of each neighbour?
 - ◊ Push model,
 - ◊ Pull model,

• Applications:

- ♦ Update procedure in SDNs:
 - ◊ Changing routing policies, adjusting links' weights, etc.
 - ◊ The data plane only forwards packets,
 - ◊ Routing and load balancing decisions are made in a centralized controller,
 - The network manager must optimize the forwarding tables (broadcast schemes).

Broadcast graphs under fully-adaptive model

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- Lemma 3.2. If there is a graph G on n vertices for which $B_{fa}(G) = \lceil \log n \rceil$, then $B^{(cl)}(n) \leq B^{(fa)}(n)$.
- mbg's for $n \leq 10$:

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Broadcast graphs under fully-adaptive model - cont.

• bg's for $11 \le n \le 14$:

d)

e)

n	3	4	5	6	7	8	9	10	11	12	13	14
Lower bound on $B^{(fa)}(n)$	2	4	5	6	8	12	10	12	13	15	18	21
Upper bound on $B^{(fa)}(n)$	2	4	5	6	8	12	10	12	16	18	23	23

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works Lemma 3.4. Consider a graph G = (V, E) with n vertices, m edges, and B_{fa}(G) = τ. It is always possible to construct a graph G' = (V', E') with 2n vertices, 2m + n edges, and B_{fa}(G') = τ + 1.
(G, n, m, τ) → (G', 2n, 2m + n, τ + 1).

◇ Corollary 3.7. For any positive k, $(G, n, m, \lceil \log n \rceil) \rightarrow (G', 2^k n, 2^k m + k 2^{k-1} n, \lceil \log n \rceil + k).$

Broadcast graphs under fully-adaptive model - cont.

• General construction of bg's:

Broadcast graphs under fully-adaptive model - cont.

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • This yeilds 4 infinite families of bg's under fully-adaptive model:

◇ Theorem 3.9. For any integer k =
$$\lceil \log n \rceil \ge 4$$
:
$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-4}) \le \frac{n \lceil \log n \rceil}{2} - \frac{8n}{9},$$

$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-3}) \le \frac{n \lceil \log n \rceil}{2} - \frac{4n}{5},$$

$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-2}) \le \frac{n \lceil \log n \rceil}{2} - \frac{n}{2},$$

$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-2} + 2^{k-3}) \le \frac{n \lceil \log n \rceil}{2} - \frac{5n}{14}$$

Results on fully-adaptive model

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Trees T:

♦ Theorem 3.10.
$$B_{cl}(T) = B_{fa}(T) = B_{a}(T)$$
.

Results on fully-adaptive model

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Trees T:

♦ **Theorem 3.10.**
$$B_{cl}(T) = B_{fa}(T) = B_a(T)$$
.

- Grids $G_{m \times n}$:
 - ♦ Corollary 3.11. $B_{fa}(G_{m \times n}) = m + n 2$.

Results on fully-adaptive model

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Trees T:

♦ Theorem 3.10.
$$B_{cl}(T) = B_{fa}(T) = B_a(T)$$
.

- Grids $G_{m \times n}$:
 - ♦ Corollary 3.11. $B_{fa}(G_{m \times n}) = m + n 2$.
- Tori $T_{m \times n}$:
 - ♦ Theorem 3.12.
 - $\diamond B_{fa}(T_{m \times n}) = \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor$, if *n* and *m* are even,
 - ♦ $B_{fa}(T_{m \times n}) = \lfloor \frac{\overline{n}}{2} \rfloor + \lfloor \frac{\overline{m}}{2} \rfloor + 1$, if one of *m* and *n* is even and the other one is odd,
 - $\diamond \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 1 \leq B_{fa}(T_{m \times n}) \leq \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 2, \text{ if both } m \text{ and } n \text{ are odd.}$

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

• Hypercubes *H_d*:

♦ Theorem 3.13. $B_{fa}(H_d) = d$.

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- Hypercubes *H_d*:
 - ♦ Theorem 3.13. $B_{fa}(H_d) = d$.
 - ◊ Corollary 3.14. Hypercube H_d is an mbg on 2^d vertices under the fully-adaptive model.

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- Hypercubes *H_d*:
 - ♦ Theorem 3.13. $B_{fa}(H_d) = d$.
 - ◊ Corollary 3.14. Hypercube H_d is an mbg on 2^d vertices under the fully-adaptive model.
- Cube Connected Cycles *CCC_d*:
 - ♦ Theorem 3.15. $B_{fa}(CCC_d) = \lceil \frac{5d}{2} \rceil 1.$

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Results on fully-adaptive model - cont.

• Is $B_{cl}(G) = B_{fa}(G)$ always?

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Is $B_{cl}(G) = B_{fa}(G)$ always?

 \diamond

◊ No!

♦ **Proposition 3.16**. There exists graph G with $B_{cl}(G) < B_{fa}(G)$:

a)

b)

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

• Complete k-ary trees $T_{k,h}$:

- From known bounds on trees:
- ♦ Observation 3.17. $\lceil \frac{6h-1}{2} \rceil \leq B_{na}(T_{k,h}) \leq kh + 2h 1.$
- ♦ We will show that the upper bound is tight.

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Complete k-ary trees $T_{k,h}$:

- From known bounds on trees:
- ♦ Observation 3.17. $\lceil \frac{6h-1}{2} \rceil \leq B_{na}(T_{k,h}) \leq kh + 2h 1.$
- ♦ We will show that the upper bound is tight.

•
$$B_{na}(T_{k,h}) \ge kh + 2h - 1.$$

 \diamond Proof by induction on *h*:

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Complete k-ary trees $T_{k,h}$:

- From known bounds on trees:
- ♦ Observation 3.17. $\lceil \frac{6h-1}{2} \rceil \leq B_{na}(T_{k,h}) \leq kh + 2h 1.$
- ♦ We will show that the upper bound is tight.

•
$$B_{na}(T_{k,h}) \ge kh + 2h - 1.$$

 \diamond Proof by induction on *h*:

$$\diamond$$
 Base case is easy $h = 1..$

$$◊ I.H: B_{na}(T_{k,h}) ≥ kh + 2h - 1, ◊ I.S: B_{na}(T_{k,h+1}) ≥ kh + 2h + k +$$

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

- Fix a vertex at level *h* + 1 as the originator,
- At *t* = 1 it sends to its parent under any scheme,
- Until t = kh + 2h all vertices in the first *h* level will be informed (based on I.H).

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

- Fix a vertex at level *h* + 1 as the originator,
- At *t* = 1 it sends to its parent under any scheme,
- Until t = kh + 2h all vertices in the first *h* level will be informed (based on I.H).
- \exists a vertex s.t. $r_{i,h}$ that gets informed at t = kh + 2h.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

- Fix a vertex at level *h* + 1 as the originator,
- At *t* = 1 it sends to its parent under any scheme,
- Until t = kh + 2h all vertices in the first *h* level will be informed (based on I.H).
- \exists a vertex s.t. $r_{i,h}$ that gets informed at t = kh + 2h.
 - \diamond If $r_{i,h}$ first sends to its parent, I.S. follows.
 - ♦ If not, pick the first vertex that $r_{i,h}$ sends the message to as the originator. I.S. follows.

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- Complete k-ary trees $T_{k,h}$:
 - ♦ Theorem 3.18. $B_{na}(T_{k,h}) = kh + 2h 1.$

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Complete k-ary trees $T_{k,h}$:

♦ Theorem 3.18.
$$B_{na}(T_{k,h}) = kh + 2h - 1$$
.

• Binomial trees T_d :

♦ Proposition 3.19. $B_{na}(T_d) = 3d - 2.$

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Complete k-ary trees $T_{k,h}$:

♦ Theorem 3.18. $B_{na}(T_{k,h}) = kh + 2h - 1.$

- Binomial trees T_d :
 - ♦ Proposition 3.19. $B_{na}(T_d) = 3d 2.$
- Complete Bipartite graph $K_{m \times n}$:

◇ Theorem 3.21.
◇ B_{na}(K_{m×n}) ≤
$$\begin{cases}
\lceil \log n \rceil + 1 + \max\{\lceil \frac{m-2^{\lceil \log n \rceil}}{n} \rceil, 0\} + \\
3 \times \lceil \sqrt{\lceil \log n \rceil + 1} + \max\{\lceil \frac{m-2^{\lceil \log n \rceil}}{n} \rceil, 0\} \rceil, & \text{if } m > n. \\
\lceil \log n \rceil + 1 + 3 \times \lceil \sqrt{\lceil \log n \rceil + 1} \rceil, & \text{if } m = n.
\end{cases}$$

Results on non-adaptive model - cont.

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

• A general upper bound for trees:

♦ Theorem 3.22.
$$B_{na}(T) \leq B_{cl}(T) + \lfloor \frac{diam(T)}{2} \rfloor$$
.

Results on non-adaptive model - cont.

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

- A general upper bound for trees:
 - ♦ Theorem 3.22. $B_{na}(T) \leq B_{cl}(T) + \lfloor \frac{diam(T)}{2} \rfloor$.
- Tightest bounds on trees:

Outline

ntroduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion

- ntroduction
- Preliminaries and Literature Review

Contribution

- Fully-adaptive Model
- Broadcast graphs under fully-adaptive Model
- Results on fully-adaptive model
- Results on non-adaptive model

- Our contribution so far:
 - ♦ Suggesting fully-adaptive model,
 - ♦ *mbg*'s for $n \le 10$,
 - \diamond bg's for $11 \leq n \leq 14$,
 - ◊ The first infinite family of bg's under universal lists model,
 - ♦ Exact value of $B_{fa}(G)$ for: trees, grids, hypercubes, cube connected cycles.
 - ♦ Upper bound on $B_{fa}(G)$ for tori.

Conclusion

- ntroduction
- Preliminaries and Literature Review

Contribution

- Fully-adaptive Model
- Broadcast graphs under fully-adaptive Model
- Results on fully-adaptive model
- Results on non-adaptive model

- Our contribution so far:
 - ♦ Suggesting fully-adaptive model,
 - ♦ *mbg*'s for $n \le 10$,
 - \diamond bg's for $11 \leq n \leq 14$,
 - ◊ The first infinite family of bg's under universal lists model,
 - ♦ Exact value of $B_{fa}(G)$ for: trees, grids, hypercubes, cube connected cycles.
 - ♦ Upper bound on $B_{fa}(G)$ for tori.
 - ◊ For non-adaptive model,
 - \diamond Exact value of $B_{na}(G)$ for: k-ary trees, binomial trees,
 - \diamond Upper bound on $B_{na}(G)$ for complete bipartite graph,
 - $\diamond\,$ A general upper bound for trees.

Future Works

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Developing a comprehensive framework based on Genetic Algorithm for all three models using universal lists.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Future Works

- Developing a comprehensive framework based on Genetic Algorithm for all three models using universal lists.
- A candidate solution to the problem: A matrix $\sigma_{n \times \Delta(G)}$.
- Generate several random solutions,
- Using crossover and mutation over multiple generations, a relatively good solution could be found.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Future Works

- Developing a comprehensive framework based on Genetic Algorithm for all three models using universal lists.
- A candidate solution to the problem: A matrix $\sigma_{n \times \Delta(G)}$.
- Generate several random solutions,
- Using crossover and mutation over multiple generations, a relatively good solution could be found.
- Pros:
 - ♦ Works for arbitrary graphs,
 - ♦ Works for all three models,
 - Several fitness functions could be defined,
 - Efficient in terms of time complexity,
 - ♦ Gives the actual broadcast scheme,
 - $\diamond\,$ The scheme could be used separately for proving many results,
 - ٥ ...

Future Works - cont.

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works • Generalizing our idea published in [1]

[1] S. Gholami and H. A. Harutyunyan. A broadcasting heuristic for hypercube of trees. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pages 355–361, 2021.

Future Works - cont.

- ntroduction
- Preliminaries and Literature Review

Contribution

- Fully-adaptive Model
- Broadcast graphs under fully-adaptive Model
- Results on fully-adaptive model
- Results on non-adaptive model

Conclusion and Future Works

- Generalizing our idea published in [1]
- Previously, we considered classical broadcasting in hypercube of trees,
- Now we replace hypercube with any broadcast graph (such as Knodel graph),

[1] S. Gholami and H. A. Harutyunyan. A broadcasting heuristic for hypercube of trees. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pages 355–361, 2021.

Future Works - cont.

- ntroduction
- Preliminaries and Literature Review

Contribution

- Fully-adaptive Model
- Broadcast graphs under fully-adaptive Model
- Results on fully-adaptive model
- Results on non-adaptive model

Conclusion and Future Works

- Generalizing our idea published in [1]
- Previously, we considered classical broadcasting in hypercube of trees,
- Now we replace hypercube with any broadcast graph (such as Knodel graph),
- Goals:
 - ◇ Find exact broadcast time when there is only one tree,
 - ◇ Approximation algorithm with several trees,
 - ◇ A heuristic by improving our previous work.

[1] S. Gholami and H. A. Harutyunyan. A broadcasting heuristic for hypercube of trees. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pages 355–361, 2021.

Time table

Introduction

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

No.		Description	Date	Done?
T1	Task 1	Broadcasting heuristic in Hypercube	Nov. 2020	\checkmark
		of Trees		
01	Outcome 1	Conference paper	Dec. 2020	√ [1]
T2	Task 2	Optimal broadcasting in Fully Con-	Aug. 2021	\checkmark
		nected Trees		
02	Outcome 2	Journal paper	Sep. 2021	√ [2]
T3	Task 3	Fully-adaptive model for universal lists	Dec. 2021	\checkmark
O3	Outcome 3	Journal paper	Jan. 2022	√ [3]
Τ4	Task 4	Broadcast graphs under universal lists	Mar. 2022	√
		model		
04	Outcome 4	Conference + Ph.D. Seminar	Apr. 2022	√ [4]
T5	Task 5	Heuristic for graphs with base being a	May. 2022	
		broadcast graph		
O5	Outcome 5	Conference paper	Jun. 2022	
T6	Task 6	GA for broadcasting with universal	Jul. 2022	
		lists		
O6	Outcome 6	Journal paper	Aug. 2022	
T7	Task 7	Thesis writing	Sep. 2022	
07	Outcome 7	Ph.D. defense	Oct. 2022	

[1] S. Gholami and H. A. Harutyunyan. A broadcasting heuristic for hypercube of trees. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pages 355–361, 2021.

[2] S. Gholami and H. A. Harutyunyan. Optimal broadcasting in fully connected trees. Submitted to *Journal of Interconnection Networks*, 2021.

[3] S. Gholami and H. A. Harutyunyan. Fully-adaptive model for broadcasting with universal lists. Submitted to Parallel Processing Letters, 2022.

[4] S. Gholami and H. A. Harutyunyan. Broadcast graphs with nodes of limited memory. Submitted to 33rd International Workshop on Combinatorial Algorithms (IWOCA), 2022.

Preliminaries and Literature Review

Contribution

Fully-adaptive Model

Broadcast graphs under fully-adaptive Model

Results on fully-adaptive model

Results on non-adaptive model

Conclusion and Future Works

Thanks a bunch!