

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d Graphs with

Conclusion and Future works

Fully-adaptive Model for Broadcasting with Universal Lists

Saber Gholami

SYNASC 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

> September 12-15, 2022 Linz, Austria.

Outline

Introduction

- Preliminaries and Literature Review
- Fully-adaptiv Model
- Results on the Fully-adaptive Model
- $\label{eq:constraints} \begin{array}{l} {\rm Trees} \\ {\rm Grids} \ {\cal G}_m \times {\scriptstyle n} \\ {\rm Tori} \ {\cal T}_m \times {\scriptstyle n} \\ {\rm Cube} \ {\rm Connected} \\ {\rm Cycle} \ {\it CCC_d} \\ {\rm Graphs \ with} \\ {\cal B}_d(G) \ < \ {\cal B}_{fs}(G) \end{array}$
- Conclusion and Future works

- Introduction
- 2 Preliminaries and Literature Review
- 3 Fully-adaptive Model
- A Results on the Fully-adaptive ModelTreesGrids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{fa}(G)$
- 5 Conclusion and Future works

Outline

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with (C)

Conclusion and Future works

1 Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Mod Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{fa}(G)$

IEEE

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times g$

Cube Connected

Cycle CCC_d Graphs with $B_{cl}(G) < B_{la}(G)$

Conclusion and Future works

- Computer networks are becoming more popular each day!
- One problem: Propagate a message
- Information dissemination:
 - ◊ Unicasting,
 - Broadcasting,
 - Multicasting,

 $\diamond \cdots$

Introduction

Introduction - cont.

Introduction

- Preliminaries and Literature Review
- Fully-adaptiv Model
- Results on the Fully-adaptive Model
- Trees Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d Graphs with
- Conclusion and Future works

- Broadcasting is the process of distributing a message from a single node (*originator*) to all other nodes of the network,
 - Each *call* is performed during one unit of time,
 - Several *calls* could be performed in parallel.

Outline

Introduction

- Preliminaries and Literature Review
- Fully-adaptive Model
- Results on the Fully-adaptive Model
- Trees Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d Graphs with
- Conclusion and Future works

Introduction

2 Preliminaries and Literature Review

- Fully-adaptive Mode
- Results on the Fully-adaptive Mode Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{fa}(G)$
- 5 Conclusion and Future wo

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{f_{\theta}}(G)$

Conclusion and Future works • The network: G = (V, E), originator $u \in V$.

IEEE

Preliminaries - Classical broadcasting

Introduction

Preliminaries and Literature Review

Fully-adapti Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected

Cycle CCC_d Graphs with

Conclusion and Future works

- The network: G = (V, E), originator $u \in V$.
- $B_{cl}(u, G)$: minimum time required to finish the broadcasting from u.
- $B_{cl}(G) = \max\{B_{cl}(u,G)|u \in V(G)\}$

♦ For any graph: $B_{cl}(G) \ge \lceil \log n \rceil$

IEEE

ntroduction

- Preliminaries and Literature Review
- Fully-adapti Model

Results on the Fully-adaptive Model

- Trees Grids $G_{m \times n}$
- Tori $T_m \times n$
- Cube Connected
- Graphs with $B_{-}(G) \leq B_{-}(G)$
- Conclusion and Future works

• The network: G = (V, E), originator $u \in V$.

Preliminaries - Classical broadcasting

- $B_{cl}(u, G)$: minimum time required to finish the broadcasting from u.
- B_{cl}(G) = max{B_{cl}(u, G)|u ∈ V(G)}
 ◊ For any graph: B_{cl}(G) > [log n]
- NP-Complete in arbitrary graphs.
- NP-Hard to approximate within a ratio of (3ε) for any $\varepsilon > 0$.
- Solved optimally for only a few networks,
- A long list of heuristics and approximation algorithms!

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_{d}

Graphs with $B_{cl}(G) < B_{lo}(G)$

- Broadcast scheme: the ordering of the neighbors of each vertex, depending on the originator:
 - \diamond Fix vertex *u* as the originator,
 - \diamond once vertex v gets informed, it will follow its list I_v^u ,

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times n$

Tori $T_m \times n$ Cube Connected

Cycle CCCd

Graphs with $B_{cl}(G) < B_{fa}(G)$

- Broadcast scheme: the ordering of the neighbors of each vertex, depending on the originator:
 - \diamond Fix vertex *u* as the originator,
 - \diamond once vertex v gets informed, it will follow its list I_v^u ,
- Drawbacks:
 - $\diamond\,$ Each vertex has to maintain up to |V| different lists for different originators,
 - A vertex has to know the originator to perform broadcasting.
 - ◊ Requires a comprehensive knowledge of the network for every vertex.

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees

- Grids $G_m \times n$ Tori $T_m \times n$
- Cube Connected

Graphs with $B_{+}(G) \leq B_{+}(G)$

- Broadcast scheme: the ordering of the neighbors of each vertex, depending on the originator:
 - \diamond Fix vertex *u* as the originator,
 - \diamond once vertex v gets informed, it will follow its list I_v^u ,
- Drawbacks:
 - $\diamond\,$ Each vertex has to maintain up to |V| different lists for different originators,
 - A vertex has to know the originator to perform broadcasting.
 - Requires a comprehensive knowledge of the network for every vertex.
 - ◊ Inefficient in real-world networks:
 - ◇ Increased message bits,
 - ◇ Need for larger local memory.

Preliminaries - Universal lists broadcasting

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with

Conclusion and Future works Broadcasting with universal lists:

 $\diamond\,$ Each vertex v has a single list $I_{\rm v}$ to follow, regardless of the originator.

 Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..
 Disk, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

Preliminaries - Universal lists broadcasting

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{fa}(G)$

Conclusion and Future works

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list I_v to follow, regardless of the originator.
- Two sub-models:
 - \diamond Non-adaptive $B_{na}(G)$: send to all vertices on the list,
 - ♦ **Adaptive** $B_a(G)$: skip the vertices from which the message is received.

 Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..
 Disk, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

Preliminaries - Universal lists broadcasting

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list l_v to follow, regardless of the originator.
 - Two sub-models:
 - ♦ Non-adaptive $B_{na}(G)$: send to all vertices on the list,
 - ♦ **Adaptive** $B_a(G)$: skip the vertices from which the message is received.
 - Introduced indirectly by Slater [1]; for any Tree, $B_{cl}(T) = B_a(T)$.
 - Diks and Pelc [2] distinguished between adaptive and non-adaptive models,
 Also proposed several broadcast schemes for different graphs
 - Long list of research ...

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..

[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

ntroduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{-}(G) \leq B_{-}(G)$

Outline

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with

Conclusion and Future works

Introduction

Preliminaries and Literature Review

3 Fully-adaptive Model

Results on the Fully-adaptive Mod Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{fa}(G)$

Fully-adaptive Model

ntroduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{fs}(G)$

Conclusion and Future works

• Another sub-model for universal lists,

• A universal list I_u is maintained at each vertex u,

• Once informed, follow the list and skip all informed vertices!

◇ Similarly to the classical model: No unnecessary calls!

Fully-adaptive Model

ntroduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{fa}(G)$

Conclusion and Future works

• Another sub-model for universal lists,

- A universal list I_u is maintained at each vertex u,
- Once informed, follow the list and skip all informed vertices!
 Similarly to the classical model: No unnecessary calls!

• Theorem 1. $B_{cl}(G) \leq B_{fa}(G) \leq B_a(G) \leq B_{na}(G)$, for any graph G.

Model	Symbol	No. of unnecessary calls	Space Complexity	Speed
Non-adaptive	$B_{na}(G)$	Many	Very Low	Very Slow
Adaptive	$B_a(G)$	Few	Low	Slow
Fully Adaptive	$B_{fa}(G)$	0	Moderate	Moderate
Classical	$B_{cl}(G)$	0	Very High	Very Fast

Fully-adaptive Model - Definitions

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_{d}

Graphs with $B_{cl}(G) < B_{ls}(G)$

- A broadcast scheme: Matrix $\sigma_{n \times \Delta}$,
 - \diamond Row *i* of σ corresponds to an ordering for vertex v_i .
- Set of all possible schemes: $\boldsymbol{\Sigma}.$

Fully-adaptive Model - Definitions

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected

Cube Connec Cycle CCC.

Graphs with $B_{cl}(G) < B_{ls}(G)$

Conclusion and Future works • A broadcast scheme: Matrix $\sigma_{n \times \Delta}$,

 \diamond Row *i* of σ corresponds to an ordering for vertex v_i .

- Set of all possible schemes: Σ .
- Let $M \in \{na, a, fa\}$ be a model:
 - ♦ $B_M^{\sigma}(v, G)$: the time steps needed to inform all the vertices in G from v while following σ under M,
 - $\diamond \ B^{\sigma}_{\mathcal{M}}(G) = \max_{v \in V} \{B^{\sigma}_{\mathcal{M}}(v,G)\},\$
 - $\diamond \ B_M(G) = \min_{\sigma \in \Sigma} \{ B^{\sigma}_M(G) \}.$

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Sender	Orc	lering c	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>V</i> ₂	V3	V4	<i>v</i> ₁	Null
V3	<i>v</i> ₂	v ₆	<i>V</i> 5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	V ₈	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
<i>v</i> ₆	V ₃	<i>V</i> 7	<i>V</i> 4	Null
V7	v ₆	<i>V</i> 4	Null	Null
<i>V</i> 8	<i>V</i> 4	Null	Null	Null

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Sender	Orc	lering c	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>V</i> ₂	V3	V4	<i>v</i> ₁	Null
V3	<i>v</i> ₂	v ₆	<i>V</i> 5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	V ₈	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
V ₆	V ₃	<i>V</i> 7	V4	Null
V7	v ₆	<i>V</i> 4	Null	Null
V ₈	<i>V</i> 4	Null	Null	Null

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Sender	Orc	lering o	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>V</i> ₂	V3	V4	<i>v</i> ₁	Null
<i>V</i> 3	<i>v</i> ₂	v ₆	<i>V</i> 5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	V ₈	<i>V</i> 7
<i>v</i> 5	V ₃	Null	Null	Null
V ₆	V3	<i>V</i> 7	V4	Null
V7	v ₆	<i>V</i> 4	Null	Null
<i>V</i> 8	<i>V</i> 4	Null	Null	Null

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Sender	Orc	lering c	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>V</i> 2	V3	V4	<i>v</i> ₁	Null
<i>V</i> 3	<i>v</i> ₂	v ₆	<i>V</i> 5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	V8	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
V ₆	V3	<i>V</i> 7	<i>V</i> 4	Null
V7	v ₆	<i>V</i> 4	Null	Null
<i>V</i> 8	<i>V</i> 4	Null	Null	Null

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Sender	Orc	lering c	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>V</i> 2	V3	<i>V</i> 4	<i>v</i> ₁	Null
<i>V</i> 3	<i>v</i> ₂	<i>v</i> ₆	<i>V</i> 5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	V ₈	<i>V</i> 7
<i>v</i> 5	V ₃	Null	Null	Null
<i>V</i> 6	V3	<i>V</i> 7	V4	Null
V7	v ₆	<i>V</i> 4	Null	Null
<i>V</i> 8	<i>V</i> 4	Null	Null	Null

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Sender	Orc	lering c	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>V</i> 2	V3	<i>V</i> 4	<i>v</i> ₁	Null
<i>V</i> 3	<i>v</i> ₂	<i>v</i> 6	V5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	V ₈	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
<i>V</i> 6	V3	<i>V</i> 7	<i>V</i> 4	Null
<i>V</i> 7	v ₆	<i>V</i> 4	Null	Null
V ₈	<i>V</i> 4	Null	Null	Null

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

Conclusion and Future works

Sender	Orc	lering o	of recei	vers	
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null	
<i>v</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>v</i> ₁	Null	(\mathbf{v}_4) (\mathbf{v}_6)
<i>V</i> 3	<i>v</i> ₂	<i>v</i> ₆	<i>V</i> 5	Null	
<i>V</i> 4	<i>v</i> ₂	V ₆	<i>v</i> 8	V7	
<i>V</i> 5	<i>V</i> 3	Null	Null	Null	
<i>v</i> ₆	<i>V</i> 3	<i>V</i> 7	V4	Null	
V7	V ₆	V4	Null	Null	$(\mathbf{v}_2) - (\mathbf{v}_3)$
<i>V</i> 8	<i>V</i> 4	Null	Null	Null	
					(v_1)

• $B_{fa}^{\sigma}(v_1, G) = 4$, while $B_a^{\sigma}(v_1, G) = 5$ and $B_{na}^{\sigma}(v_1, G) = 6$.

Fully-adaptive Model - AAA

• Assumptions:

- ◊ None-faulty network with established links,
- Unique and heavy message,
- ◊ The message: header + payload,

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_{d}

Graphs with $B_d(G) < B_b(G)$

atraduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

- Trees
- Grids $G_m \times n$ Tori $T_m \times n$
- Cube Connected
- Graphs with $B_{d}(G) < B_{dr}(G)$
- Conclusion and Future works

Fully-adaptive Model - AAA

- Assumptions:
 - ◊ None-faulty network with established links,
 - ◊ Unique and heavy message,
 - ◊ The message: header + payload,
- Architecture:
 - o How to know the state of each neighbour?
 - ◇ Push model,
 - ◇ Pull model,

ntroduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{fa}(G)$

Conclusion and Future works

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- ◊ Unique and heavy message,
 - ◊ The message: header + payload,
- Architecture:
 - o How to know the state of each neighbour?
 - ◇ Push model,
 - ◊ Pull model,

• Applications:

- ◊ Update procedure in SDNs:
 - Changing routing policies, adjusting links' weights, etc.
 - ◊ The data plane only forwards packets,
 - ◊ Routing and load balancing decisions are made in a centralized controller,
 - The network manager must optimize the forwarding tables (broadcast schemes).

Outline

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

Results on the Fully-adaptive Model

 $\label{eq:constraints} \begin{array}{l} {\rm Trees} \\ {\rm Grids} \ G_m \succsim n \\ {\rm Tori} \ T_m \leftthreetimes n \\ {\rm Cube} \ {\rm Connected} \\ {\rm Cycle} \ CCC_d \\ {\rm Graphs \ with} \\ B_d(G) \ < \ B_{fa}(G) \end{array}$

Conclusion and Future works

Introduction

Preliminaries and Literature Review

Fully-adaptive Model

A Results on the Fully-adaptive Model Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{fa}(G)$

Results on the Fully-adaptive Model

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{fa}(G)$

Conclusion and Future works • Trees T:

♦ Theorem 2.
$$B_{cl}(T) = B_{fa}(T) = B_a(T)$$
.

Introduction

- Preliminaries and Literature Review
- Fully-adaptiv Model
- Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{f_{\theta}}(G)$

Conclusion and Future works

- Grids $G_{m \times n}$:
 - ◇ Corollary 1. $B_{fa}(G_{m \times n}) = m + n - 2.$

Figure: Grid with m = 4, n = 3

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$

Tori $T_{m \times n}$ Cube Connected

Cycle CCCd Graphs with

 $B_{cl}(G) < B_{fa}(G)$

Conclusion and Future works

- Tori $T_{m \times n}$:
 - ♦ Theorem 3.
 - ♦ $B_{fa}(T_{m \times n}) = \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor$, if *m* and *n* are even,
 - ◇ $B_{fa}(T_{m \times n}) = \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 1$, if only one of *m* and *n* is even,
 - $\diamond \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 1 \le B_{fa}(T_{m \times n}) \le \\ \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 2, \\ \text{if } m \text{ and } n \text{ are odd.} \end{cases}$

Figure: Torus with m = 4, n = 3

Introduction

- Preliminaries and Literature Review
- Fully-adaptiv Model
- Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$ Tori $T_m \times n$

Cube Connected

Graphs with $B_{cl}(G) < B_{lo}(G)$

- Cube Connected Cycle *CCC_d*:
 - ◇ Theorem 4.
 ◇ $B_{fa}(CCC_d) = \lceil \frac{5d}{2} \rceil 1$

Figure: Cube-Connected Cycle with d = 3

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees

Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d

Graphs with $B_{cl}(G) < B_{fa}(G)$

Conclusion and Future works • Is $B_{cl}(G) = B_{fa}(G)$ always?

Trees

Grids G X a Tori $T_m \times n$ Cube Connected Cycle CCC.

Graphs with $B_{ci}(G) < B_{fa}(G)$

• Is $B_{cl}(G) = B_{fa}(G)$ always?

◊ No!

Proposition 1. There exists graph G with $B_{cl}(G) < B_{fa}(G)$: \diamond

a)

b)

Outline

Introduction

- Preliminaries and Literature Review
- Fully-adaptive Model
- Results on the Fully-adaptive Model
- Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{la}(G)$

Conclusion and Future works

Introduction

- Preliminaries and Literature Review
- Fully-adaptive Model
- Results on the Fully-adaptive Mod Trees Grids $G_{m \times n}$ Tori $T_{m \times n}$ Cube Connected Cycle CCC_d Graphs with $B_{cl}(G) < B_{fa}(G)$
- 5 Conclusion and Future works

IEEE

Conclusion

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times n$

Tori $T_{m \times n}$ Cube Connected

Cycle CCC_d

 $\begin{array}{l} {\rm Graphs \ with} \\ {\rm B}_{\rm cl}({\rm G}) \ < \ {\rm B}_{\rm fs}({\rm G}) \end{array}$

- We proposed the Fully-adaptive model for broadcasting with universal lists
 - Benefits:
 - Uses less memory compared to classical broadcasting,
 - Faster than the adaptive and non-adaptive models,
 - We designed optimal broadcast schemes for:
 - ◊ Trees,
 - ◊ Grids,
 - ◊ Tori,
 - ◊ Cube-connected Cycle,
- We designed graphs with $B_{cl}(G) < B_{fa}(G)$.

Future works

Introduction

- Preliminaries and Literature Review
- Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d Graphs with

- Finding the broadcast time of other families of graphs under the fully-adaptive model, such as:
 - ◇ Complete graph,
 - ◊ Shuffle-exchange,
 - ◊ DeBruijn,
 - Complete bipartite graph,
 - ♦ etc.
- Designing an efficient algorithm to find $B_{fa}(G)$ for general graphs, or prove that it is NP-Hard.

Introduction

Preliminaries and Literature Review

Fully-adaptiv Model

Results on the Fully-adaptive Model

Trees

Grids $G_m \times n$ Tori $T_m \times n$ Cube Connected Cycle CCC_d Graphs with $B_d(G) < B_{\ell_0}(G)$

