

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Broadcasting Problem in a Specific Class of Graphs

By: Saber Gholami Supervisor: Professor Hovhannes Harutyunyan

Concordia University, Department of Computer Science and Software Engineering

April 28th, 2021

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Introduction

Outline

2 Preliminaries and Literature Review

3 Contribution Hypercube of Trees Fully Connected Trees

Future Works Development for our heuristic Messy broadcasting Broadcasting using universal lists

Outline

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

1 Introduction

Preliminaries and Literature Review

ontribution Hypercube of Trees Fully Connected Trees

Future Works Development for our heuristic Messy broadcasting Broadcasting universal list

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- Growth of using computer networks,
- Great attention to all major problems in this area,
- Information dissemination,
- Broadcasting:
 - Process of distributing a message starting from a single node (*originator*) to all other nodes of the network using the network's links.

Outline

ntroduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Introduction

2 Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal list

Preliminaries

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

• The network: G = (V, E), originator $u \in V$.

Preliminaries

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- The network: G = (V, E), originator $u \in V$.
- b(u, G): minimum time required to finish the broadcasting originating from u.
- $b(G) = \max\{b(u,G)|u \in V(G)\}$
 - ♦ For any graph: $b(G) \ge \lceil \log n \rceil$

Preliminaries

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using

universal lists Conclusion and Timeline

- The network: G = (V, E), originator $u \in V$.
- b(u, G): minimum time required to finish the broadcasting originating from u.
- $b(G) = \max\{b(u,G)|u \in V(G)\}$
 - ♦ For any graph: $b(G) \ge \lceil \log n \rceil$
- Two major problems in this area:
 - Broadcast time problem,
 - ♦ Network design.

Literature Review - Broadcast time problem

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- NP-Complete in arbitrary graphs [22],
 - ◊ Remains NP-Complete even in more restricted families of graphs such as planar and decomposable graphs [17].

Literature Review - Broadcast time problem

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- NP-Complete in arbitrary graphs [22],
 - ◊ Remains NP-Complete even in more restricted families of graphs such as planar and decomposable graphs [17].
- Exact solutions:
 - ◊ Trees [22],
 - ◊ Unicyclic graph [11],
 - ♦ Necklace graph [9]
 - ♦ Tree of cycles, Tree of cliques [19]

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Literature Review - Broadcast time problem - cont.

- Approximation algorithms:
 - \diamond ($\sqrt{|V|}$)-additive approximation [18],
 - ♦ $\left(\frac{\log^2 |V|}{\log \log |V|}\right)$ -approximation algorithm [20],
 - ♦ $\left(\frac{\log k}{\log \log k}\right)$ -approximation algorithm for multicasting [5]
 - · Or a $\left(\frac{\log |V|}{\log \log |V|}\right)$ -approximation solution for broadcasting [5]

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Literature Review - Broadcast time problem - cont.

- Approximation algorithms:
 - \diamond ($\sqrt{|V|}$)-additive approximation [18],
 - ♦ $\left(\frac{\log^2 |V|}{\log \log |V|}\right)$ -approximation algorithm [20],
 - $\diamond \left(\frac{\log k}{\log \log k}\right)$ -approximation algorithm for multicasting [5]
 - · Or a $\left(\frac{\log |V|}{\log \log |V|}\right)$ -approximation solution for broadcasting [5]
- Inapproximability of the problem:
 - $\diamond\,$ broadcast time could not be approximated within a factor of $\frac{57}{56}-\varepsilon\,$ for an arbitrary graph [21]
 - ♦ NP-Hard to approximate the broadcast problem within a ratio of (3ε) , for any $\varepsilon > 0$ [4].

Literature Review - Broadcast time problem - cont.

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

- Heuristics:
 - ♦ Round Heuristic: $O(R|V||E|\log|V|)$ [1]
 - ♦ Tree Based Algorithm: O(R|E|) [12]
 - \diamond Random heuristic: O(|E|) [14]
 - · Semi-random version: O(|E|) [13]

♦ Based on Genetic Algorithm [16]

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Outline

Introduction

Preliminaries and Literature Review

3 Contribution Hypercube of Trees Fully Connected Trees

Future Works Development for our heuristic Messy broadcasting Broadcasting using universal lis

Hypercube of Trees

ntroduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

- Development for our heuristic Messy broadcasting
- Broadcasting using universal lists

- A Hypercube of Trees HT_k :
 - \diamond A hypercube of dimension k +
 - $\diamond 2^k$ arbitrary trees.
- Very useful structure:
 - ♦ Distributing data [15],
 - Simultaneous exchange of packets between processors [2],
 - <u>ه</u> ...
- Current upperbound:
 (2 ε)-approximation [3]

Figure: HT_3 , A hypercube of trees with dimension 3

HT_k - Proposed Heuristic

Introduction

Preliminaries and Literature Review

Contribution

Trees

Hypercube of Trees Fully Connected

Future Works

Development for our heuristic Messy broadcasting Broadcasting using

Broadcasting using universal lists

- Instead of finding $b(u, HT_k)$, solve this:
 - $\diamond \ b(u, HT_k) \leq \tau?$

HT_k - Proposed Heuristic

ntroduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline • Instead of finding $b(u, HT_k)$, solve this:

$$\Rightarrow b(u, HT_k) \leq \tau?$$

• Already know the upper bound and lower bound:

$$\diamond \underbrace{\max\left\{k, \max_{0 \le i \le 2^{k}-1} \{b(r_i, T_i)\}\right\}}_{lb} \le b(u, HT_k) \le \underbrace{k + \max_{0 \le i \le 2^{k}-1} \{b(r_i, T_i)\}}_{ub}$$

HT_k - Proposed Heuristic

ntroduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

- Instead of finding $b(u, HT_k)$, solve this:
 - $\diamond \ b(u, HT_k) \leq \tau?$
 - Already know the upper bound and lower bound:

$$\diamond \underbrace{\max\left\{k, \max_{0 \le i \le 2^{k} - 1}\left\{b(r_{i}, T_{i})\right\}\right\}}_{lb} \le b(u, HT_{k}) \le \underbrace{k + \max_{0 \le i \le 2^{k} - 1}\left\{b(r_{i}, T_{i})\right\}}_{ub}$$

- Do a binary search on this range (*MBS*).
 - \diamond Invoke the main heuristic (*br*) within this function.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

HT_k - **Proposed Heuristic** - *MBS*

Algorithm 1 The Modified Binary Search MBS(G, r_i, lb, ub)

input : $HT_k = (V, E)$, originator r_i , lower bound *lb*, and the upper bound *ub* **output**: An improved broadcast time for $b(r_i, HT_k)$ denoted by bb = ub

if *ub* < *lb* then return *FALSE*

end

```
\begin{array}{l} \textit{mid} = \textit{lb} + \lfloor \frac{\textit{ub}-\textit{lb}}{2} \rfloor \\ \textit{if } \textit{br}(\textit{HT}_k, \textit{r}_i, \textit{mid}) \textit{ then} \\ \mid \textit{update } \textit{b} = \textit{mid} \\ \mid \textit{return } \textit{MBS}(\textit{G}, \textit{r}_i, \textit{lb}, \textit{mid} - 1) \\ \textit{else} \\ \mid \textit{return } \textit{MBS}(\textit{G}, \textit{r}_i, \textit{mid} + 1, \textit{ub}) \\ \textit{end} \\ \textit{return } \textit{b} \end{array}
```


Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

HT_k - Proposed Heuristic - br

- Considering a root vertex r_i at time t:
 - $\diamond \ b(r_i, T_i) > \tau t:$
 - return FALSE!

$$\diamond \ b(r_i, T_i) = \tau - t:$$

 $\cdot r_i$ broadcasts in its tree T_i .

 $\diamond \ b(r_i, T_i) < \tau - t:$

r_i must contribute in the Hypercube...

```
Algorithm 2 Broadcasting heuristic br(G, r_i, \tau)
Input: HT_k = (V, E), originator r_i, a candidate time \tau.
Output: TRUE if a broadcast scheme is found, FALSE otherwise.
Initialize V_I = \{r_i\}, V_U = V_{H_L} - V_I, covered(u \in V_U) = FALSE,
 covered(r_i) = TRUE, rem_r = NULL
for 0 \le t \le \tau - 1 do
   for u \in V_U do
       update rem_u = \tau - t - b(u, T_u) - dist(u, V_l)
   end
   for r_i \in V_i do
       if h(r, T) < \tau - t then
           if husn(r_{i}) then
              r_i informs v following its path, V_i = V_i \cup \{v\}, V_i = V_i - \{v\}:
              continue:
           end
           if r. is stuck then
           | continue;
          end
          Choose r_i with the minimum value of rem_r, from Equation (3.5)
           in a way that there is at least one valid path from r_i to r_i:
          Denote the valid paths by VP = \{p_1, \dots, p_n\}:
           MC = \{p \in VP | c_p = \min_{w \in VP} c_w\};
           selected = \{p \in MC | d_p = \min_{w \in MC} d_w\}
           if |selected| > 1 then
           1 Select one randomly:
           end
           For all mid-vertices on the selected path, set covered(mid-ver) =
           TRUE, busy(mid - ver) = TRUE;
          r_i informs v which is the first vertex on the selected path:
          V_I = V_I \cup \{v\}, V_{II} = V_{II} - \{v\};
       oleo
           if b(r_t, T_t) = \tau - t then
              Follow the broadcast scheme in trees:
              Update b(r_{\star}, T) with regard to a sub-tree T, which has been
               informed:
          oleo
           | return FALSE
          ond
       end
   end
                                      18
end
return TRUE
```


HT_k - Proposed Heuristic - br - cont.

- Introduction
- Preliminaries and Literature Review

Contribution

Hypercube of Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

- We want to send a message from a root vertex r_i to another root vertex r_j
 - Two questions must be answered:
 - How to choose r_j ?

♦ The one with the minimum value of rem_{r_j} :

$$rem_{r_j} = \tau - t - b(r_j, T_j) - dist(r_j, V_l)$$

HT_k - Proposed Heuristic - br - cont.

- ntroduction
- Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

- Development for our heuristic Messy broadcasting
- Broadcasting using universal lists

Conclusion and Timeline

- We want to send a message from a root vertex r_i to another root vertex r_j
 - Two questions must be answered:
 - How to choose r_j ?

♦ The one with the minimum value of rem_{r_i} : $rem_{r_i} = \tau - t - b(r_i, T_i) - dist(r_i, V_I)$

- How to choose a path between r_i and r_j ?
 - ◇ A path P with the minimum value of c_P and d_P:
 c_P = min_{rm∈P} {rem_{rm}}
 d_P = ∑_{rm∈P} rem_{rm}
 ◇ More "critical" vertices on such a path!

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

HT_k - Evaluation - Setup

• Generate 1000 random HT_k for each k.

♦ Following Gaussian distribution $p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• In terms of:

- ◊ success rate: How many times we performed better than [3]?
- ♦ *gain*: How much better?
- $\diamond |V|$

HT_k - Evaluation - Ex 1.1

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline Table: Numerical Results for Ex1.1: $\mu = 3, \sigma = 1$

k	average $ V $	success rate	average gain
3	115.86	29.79%	7.55%
4	233.55	28.49%	5.84%
5	466.09	21.3%	3.71%
6	932.49	5.7%	0.85%
7	1862.98	1.3%	0.16%
8	3729.59	0.2%	0.02%

HT_k - Evaluation - Ex 1.2

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline Table: Numerical Results for Ex1.2: $\mu = 3, \sigma = 3$

k	average $ V $	success rate	average gain
3	614.28	73.5%	24.45%
4	1189.54	78.6%	23.31%
5	2481.77	74.5%	19.81%
6	5008.22	69.2%	15.55%
7	10003.63	63.2%	12.5%
8	19927.99	54.7%	9.76%

HT_k - Evaluation - Ex 1.3

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline Table: Numerical Results for Ex1.3: $\mu = 5, \sigma = 5$

k	average $ V $	success rate	average gain
3	185255.48	81.20%	28.65%
4	280823.85	86.00%	28.82%
5	704372.23	88.10%	27.35%
6	1313690.28	89.30%	26.70%
7	3532669.06	90.50%	25.85%
8	5245921.21	90.10%	24.10%

HT_k - Evaluation - Ex 2.1

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

HT_k - Evaluation - Ex 2.2

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Figure: Ex2.2: $k = 5, \mu = 2$

HT_k - Conclusion

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- We proposed a heuristic for broadcasting in a hypercube of trees.
- Theoretically:
 - ◊ 2-approximation
- Practically:
 - ◊ outperform the best-known algorithm for the same problem in up to 90% of the experiments while speeding up the process up to 30%

Fully Connected Trees

Introduction

- Preliminaries and Literature Review
- Contribution
- Hypercube of Trees
- Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- A Fully Connected Tree FCT_n :
 - \diamond A Clique of size n +
 - ◊ n arbitrary trees.
- Previous result: A O(|V| log |V|) algorithm [8]

Figure: A Fully Connected Tree FCT_n

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline • Instead of finding $b(i, FCT_n)$, solve this: $\diamond \ b(i, FCT_n) \leq \tau$?

FCT_n - Broadcast Algorithm for Root Vertices

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline Instead of finding b(i, FCT_n), solve this:
 b(i, FCT_n) ≤ τ?

FCT_n - Broadcast Algorithm for Root Vertices

Lemma:

$$\diamond \underbrace{\max\left\{\lceil \log n \rceil, \max\{b(i, T_i)\}\right\}}_{lb} \leq b(i, FCT_n) \leq \underbrace{\lceil \log n \rceil + \max\{b(i, T_i)\}}_{ub}$$

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using

universal lists

Conclusion and Timeline

FCT_n - Broadcast Algorithm for Root Vertices

- Instead of finding b(i, FCT_n), solve this:
 b(i, FCT_n) ≤ τ?
 - Lemma:
 ◊ max { [log n], max { b(i,]

$$\underbrace{\max\left\{\lceil \log n \rceil, \max\{b(i, T_i)\}\right\}}_{lb} \le b(i, FCT_n) \le \underbrace{\lceil \log n \rceil + \max\{b(i, T_i)\}}_{ub}$$

- Do a binary search on this range (*MBS*).
 - \diamond Invoke the main algorithm (*BR*_{τ}) within this function.

FCT_n - Broadcast Algorithm for Root Vertices - cont.

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

- Considering a root vertex *i* at time *t*:
 - $\diamond \ b(i, T_i) > \tau t:$
 - return FALSE!

```
\diamond \ b(i, T_i) = \tau - t:
```

 \cdot *i* broadcasts in its tree T_i .

 $\diamond \ b(i, T_i) < \tau - t:$

• *i* must contribute in the Clique...

```
Algorithm 3 The broadcast algorithm BR_{\tau}(FCT_n, i, \tau)
Input: FCT_{-} = (V E) originator i candidate broadcast time \tau
Output: FALSE if \tau cannot be the broadcast time. TRUE if broadcasting
           can be accomplished in at most \tau time units.
Initialize: the labels w(i, t) and m_i, for all root vertices;
Initialize: V_{i} = \{i\}, V_{i} = V \setminus V_{i}, k = \text{NULL}:
for each t such that 0 \le t \le \tau - 1 do
    for each v \in V_U do
        if v is a root vertex then
            update l, as follows: l_{\tau} = \tau - t - w(v, t) - 1:
        end
    end
    for each v \in V_I do
        if v is a mot verter then
            if w(v, t) < \tau - t then
                v informs vertex i at time t such that i has the smallest value
                 of l_{-} in Vw:
               l_i=NULL, V_I = V_I \cup \{j\}, V_{II} = V_{II} \setminus \{j\};
            else
                if w(v, t) = \tau - t then
                   v informs one of its children which has the highest value of
                     m_{v_i} in the tree rooted at T_{v_i}, 1 \le j \le d(v);
                    m_{v_i}=NULL, V_I = V_I \cup \{v_i\}, V_{U} = V_U \setminus \{v_i\};
                    update w(v,t) = \max_{1 \le k \le d(v)} \{k + m_{v_k}\};
                else
                   return FALSE
                end
            end
        else
            v informs a tree vertex u in the uninformed sub-tree rooted at v
             based on the well-known broadcasting algorithm in trees:
            V_{I} = V_{I} \cup \{u\}, V_{II} = V_{II} \setminus \{u\}
        end
    end
end
return TRUE
```


Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

FCT_n - Broadcast Algorithm for Root Vertices - cont.

- We want to send a message from a root vertex i to another root vertex j
- Two questions must be answered:
 - How to choose *j*?

 \diamond The one with the minimum value of I_j :

$$egin{aligned} & l_j = au - t - w(j,t) - 1, \ & w(i,t) = \max_{1 \leq j \leq d(i)} (j + m_{i_j}), \ & m_{i_j} = b(i_j, T_{i_j}). \end{aligned}$$

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

FCT_n - Broadcast Algorithm for Root Vertices - cont.

- We want to send a message from a root vertex i to another root vertex j
- Two questions must be answered:
 - How to choose *j*?
 - ♦ The one with the minimum value of I_i :

$$egin{aligned} & l_j = au - t - w(j,t) - 1, \ & w(i,t) = \max_{1 \leq j \leq d(i)} (j + m_{i_j}), \ & m_{i_j} = b(i_j, T_{i_j}). \end{aligned}$$

- How to choose a path between r_i and r_j ?
 - \diamond Easy! They are connected by an edge (i, j).

The

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

FCT_n - Proof of Correctness

Theorem 1

If Algorithm $BR_{\tau}(FCT_n, i, \tau)$ outputs TRUE, then $b(i, FCT_n) \leq \tau$.

Theorem 2

if Algorithm $BR_{\tau}(FCT_n, i, \tau)$ returns FALSE, then $b(i, FCT_n) > \tau$.

- Lemma: If under broadcast scheme S_{τ} , a root vertex *i* informs a tree vertex i_j at time t_1 , then it is necessary for any other scheme *S* for broadcasting in the same graph to inform i_j by the time t' where $t' \leq t_1$.
- Lemma: Assume $b(i, FCT_n) = \tau$. Let S_{opt} be an optimum broadcast scheme different than S_{τ} . Then, at any time t, $|V_t(S_{\tau})| \ge |V_t(S_{opt})|$.
 - $◊ V_t(S)$: The set of informed root vertices by the time *t* under the broadcast scheme *S*.

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using

universal lists Conclusion and Timeline

O(Algorithm) × O(log(ub − lb)) ◊ The Algorithm is linear O(|V|),

 FCT_n - Time Complexity

$$ub - lb = \lceil \log n \rceil + \max\{b(i, T_i)\} - \max\{\lceil \log n \rceil, \max\{b(i, T_i)\}\} \rightarrow ub - lb = \min\{\lceil \log n \rceil, \max\{b(i, T_i)\}\} \rightarrow ub - lb \leq \lceil \log n \rceil.$$

• Complexity: $O(|V| \log \log n)$

 \diamond

(1)

FCT_n - Example

Labels after $t=1$							
root vertex <i>i</i>	root vertex $i \mid w(i, t) \mid m_{i_1} \mid m_{i_2} \mid m_{i_3} \mid m_{i_4} \mid l_i$						
1	<u>б</u> 2	15 -	1	-	-	-	
2	4	0	0	0	0	10	
3	2	0	0	-	-	32	
4	0	-	-	-	-	54	
5	3	2	1	0	-	21	

miloudetion

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

FCT_k - Broadcast Algorithm for Tree Vertices

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees

Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Theorem 3

This Algorithm generates the optimal broadcast time for a tree vertex in an FCT_n .

• Complexity = The same.

FCT_n - **Conclusion**

Introduction

- Preliminaries and Literature Review
- Contribution
- Hypercube of Trees
- Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- An optimal algorithm for broadcasting in an FCT_n ,
- Proof of correctness.
- Complexity: $O(|V| \log \log n)$,

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Outline

Introduction

Preliminaries and Literature Review

Contribution Hypercube of Trees Fully Connected Trees

4 Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Development for our heuristic

ntroduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

- The heuristic proposed for HT_k :
 - \diamond Extending the results for other networks: CCC_d , SE_d , BF_d , DE_d , etc.
 - Attaching random trees to the vertices of those networks,
 - ♦ Improving the heuristic itself:
 - When the heuristic fails?

When *i* wants to inform *j*, but dist(i, j) is huge.

· How to resolve it?

Consider a new label: $rem_{v,u}$; $v \in V_I$, $u \in V_U$.

Messy broadcasting

ntroduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline • Limited knowledge over the network,

◊ Nodes must be able to act independently.

Messy broadcasting

- ntroduction
- Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

- Limited knowledge over the network,
 - $\diamond~$ Nodes must be able to act independently.
- Three models:
 - \diamond M_1 : A vertex knows the state of its neighbors; informed-uninformed.
 - \diamond M_2 : A vertex knows from which vertices it received the message and to which vertices it has sent it.
 - \diamond *M*₃: A vertex only knows to which vertices it has sent the message.

Messy broadcasting

- ntroduction
- Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

- Limited knowledge over the network,
 - $\diamond~$ Nodes must be able to act independently.
- Three models:
 - \diamond M_1 : A vertex knows the state of its neighbors; informed-uninformed.
 - \diamond M_2 : A vertex knows from which vertices it received the message and to which vertices it has sent it.
 - \diamond *M*₃: A vertex only knows to which vertices it has sent the message.
- Difference with classical model:
 - $\diamond t_i(u)$ is the maximum time units required to finish broadcasting from u, not minimum!

Messy broadcasting - cont.

- ntroduction
- Preliminaries and Literature Review
- Contribution
- Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

- Limited results so far [10]:
 - ♦ The exact values of $t_i(G)$ for K_n , P_n , C_n , and Complete d-ary trees for i = 1, 2, 3,
 - ♦ The exact values of $t_i(G)$ for H_k for only i = 2, 3,
 - \diamond Upper bounds for CCC_d , SE_d , BF_d , and DE_d for i = 1, 2, 3.

Messy broadcasting - cont.

- ntroduction
- Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic

Messy broadcasting

Broadcasting using universal lists

- Limited results so far [10]:
 ◊ The exact values of t_i(G) for K_n, P_n, C_n, and Complete d-ary trees for i = 1, 2, 3.
 - ♦ The exact values of $t_i(G)$ for H_k for only i = 2, 3,
 - \diamond Upper bounds for CCC_d , SE_d , BF_d , and DE_d for i = 1, 2, 3.
- Open problems:
 - $\diamond t_1(H_k),$
 - \diamond Tightening the bounds for CCC_d , SE_d , BF_d , and DE_d .
 - ◊ Proposing a heuristic for general graphs.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists

• In classical model: Each node keeps a single list for each possible originator and need the complete knowledge over the network.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists

- In classical model: Each node keeps a single list for each possible originator and need the complete knowledge over the network.
- Here, a universal list is maintained for all vertices.
- Two models:
 - Adaptive: Skip the ones you received from,
 - ♦ Non-adaptive: Skip none; send to all neighbors.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists

- In classical model: Each node keeps a single list for each possible originator and need the complete knowledge over the network.
- Here, a universal list is maintained for all vertices.
- Two models:
 - Adaptive: Skip the ones you received from,
 - ♦ Non-adaptive: Skip none; send to all neighbors.
- We want to introduce a third model:
 - ♦ Fully adaptive: Skip all informed vertices.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists

- In classical model: Each node keeps a single list for each possible originator and need the complete knowledge over the network.
- Here, a universal list is maintained for all vertices.
- Two models:
 - Adaptive: Skip the ones you received from,
 - ◊ Non-adaptive: Skip none; send to all neighbors.
- We want to introduce a third model:
 - ♦ Fully adaptive: Skip all informed vertices.
- A trade-off between space complexity and the speed of broadcasting:

	Model	No. of unnecessary calls	Space Complexity	Speed
	Non-adaptive	Many	Very Low	Very Slow
•	Adaptive	Few	Low	Slow
	Fully Adaptive	0	Moderate	Moderate
	Classical	0	Very high	Very Fast

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists - cont.

• Next step: Develop a comprehensive framework based on Genetic Algorithm for all three models using universal lists.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists - cont.

- Next step: Develop a comprehensive framework based on Genetic Algorithm for all three models using universal lists.
- A candidate solution to the problem: A matrix $\sigma_{n \times \Delta(G)}$.
- Generate several random solutions,
- Using crossover and mutation over multiple generations, a relatively good solution could be found.

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Work

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

Broadcasting using universal lists - cont.

- Next step: Develop a comprehensive framework based on Genetic Algorithm for all three models using universal lists.
- A candidate solution to the problem: A matrix $\sigma_{n \times \Delta(G)}$.
- Generate several random solutions,
- Using crossover and mutation over multiple generations, a relatively good solution could be found.
- Pros:
 - ♦ Works for arbitrary graphs,
 - ♦ Works for all three models,
 - ◊ Several fitness functions could be defined,
 - ◊ Efficient in terms of time complexity,
 - ♦ Gives the actual broadcast scheme,
 - $\diamond\,$ The scheme could be used separately for proving many results,
 - ٥ ...

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

Conclusion and Timeline

Outline

Introduction

Preliminaries and Literature Review

Contribution Hypercube of Trees Fully Connected Trees

Future Works Development for our heuristic Messy broadcasting Broadcasting universal list

Conclusion

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting

Broadcasting using universal lists

Conclusion and Timeline

• Considering broadcast problem,

Conclusion

- ntroduction
- Preliminaries and Literature Review
- Contribution
- Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- Considering broadcast problem,
- So far:
 - \diamond A broadcasting heuristic for HT_k ,
 - Published in [6]
 - \diamond An optimal broadcast algorithm for FCT_n ,
 - · Submitted to [7]

Conclusion

- ntroduction
- Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

- Considering broadcast problem,
- So far:
 - \diamond A broadcasting heuristic for HT_k ,
 - Published in [6]
 - \diamond An optimal broadcast algorithm for FCT_n ,
 - Submitted to [7]
- In the future:
 - Development for our heuristic,
 - ◊ Working on Messy broadcasting,
 - A new model based on universal lists,
 - $\diamond\,$ A comprehensive framework using GA for broadcasting under universal lists.

Timeline

Introduction

Preliminaries and Literature Review

Contribution

Hypercube of Trees Fully Connected Trees

Future Works

Development for our heuristic Messy broadcasting Broadcasting using universal lists

2021					
Jan.	Feb. T2	Mar. O2	Apr.		
May T3	^{Jun.}	Jul.	Aug.		
Sep. T4	Oct. O4	Nov.	Dec. T5		

2022					
Jan. O5	Feb.	^{Mar.} T6	^{Арг.} Об		
May.	Jun.	^{Jul.}	Aug. O7		
Sep.	Oct.	Nov.	Dec.		

No.		Description	Date	Done?
T1	Task 1	Broadcasting heuristic in Hyper-	Nov. 2020	\checkmark
		cube of Trees		
O1	Outcome 1	Conference paper	Dec. 2020	√ [24]
T2	Task 2	Optimal broadcasting in Fully	Feb. 2021	\checkmark
		Connected Trees		
O2	Outcome 2	Journal paper	Mar. 2021	✓ [25]
T3	Task 3	Introducing a new broadcast	May 2021	
		model for universal lists		
O3	Outcome 3	Conference paper	Jun. 2021	
T4	Task 4	Broadcasting with universal lists	Sep. 2021	
		with GA		
O4	Outcome 4	Journal paper + Ph.D. Seminar	Oct. 2021	
T5	Task 5	Messy broadcasting	Dec. 2021	
O5	Outcome 5	Journal paper	Jan. 2022	
T6	Task 6	Improved heuristic for Hypercube	Mar. 2022	
		of Trees		
O6	Outcome 6	Journal paper	Apr. 2022	
T7	Task 7	Thesis writing	Jul. 2022	
07	Outcome 7	Ph.D. defense	Aug. 2022	

Important References I

[] René Beier and Jop F. Sibeyn.

A powerful heuristic for telephone gossiping.

In Proceedings of the 7th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pages 17–35. Carleton Scientific, 2000.

- [2] Dimitri P Bertsekas, C Özveren, George D Stamoulis, Paul Tseng, and John N. Tsitsiklis.
 Optimal communication algorithms for hypercubes.
 Journal of Parallel and Distributed Computing, 11(4):263–275, 1991.
- [3] Puspal Bhabak and Hovhannes A Harutyunyan.

Broadcast problem in hypercube of trees.

In International Workshop on Frontiers in Algorithmics (FAW), pages 1-12. Springer, 2014.

[4] Michael Elkin and Guy Kortsarz.

A combinatorial logarithmic approximation algorithm for the directed telephone broadcast problem.

SIAM journal on Computing, 35(3):672–689, 2005.

Important References II

5] Michael Elkin and Guy Kortsarz.

Sublogarithmic approximation for telephone multicast.

Journal of Computer and System Sciences, 72(4):648–659, 2006.

[6] Saber Gholami and H. A. Harutyunyan. A broadcasting heuristic for hypercube of trees.

In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pages 355–361, 2021.

- Saber Gholami and Hovhannes A Harutyunyan. Optimal broadcasting in fully connected trees. Submitted to Networks, 2021.
- [8] Hovhannes Harutyunyan and Edward Maraachlian.

Broadcasting in fully connected trees.

In 2009 15th International Conference on Parallel and Distributed Systems (ICPADS), pages 740–745. IEEE, 2009.

Important References III

[9] Hovhannes A. Harutyunyan, George Laza, and Edward Maraachlian. Broadcasting in necklace graphs.

In Canadian Conference on Computer Science & Software Engineering (C3S2E), pages 253–256. ACM, 2009.

[10] Hovhannes A Harutyunyan and Arthur L Liestman. Messy broadcasting.

Parallel Processing Letters, 8(02):149–159, 1998.

- Hovhannes A Harutyunyan and Edward Maraachlian.
 On broadcasting in unicyclic graphs.
 Journal of combinatorial optimization, 16(3):307–322, 2008.
- [12] Hovhannes A Harutyunyan and Bin Shao.

An efficient heuristic for broadcasting in networks. Journal of Parallel and Distributed Computing, 66(1):68–76, 2006.

Important References IV

[13] Hovhannes A Harutyunyan and Wei Wang.

Broadcasting algorithm via shortest paths.

In 16th IEEE International Conference on Parallel and Distributed Systems (ICPADS), pages 299–305. IEEE, 2010.

[14] Hovhannes A Harutyunyan and Wei Wang.

A random heuristic for message broadcasting in arbitrary networks.

In Proceedings of the 2010 International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pages 341–345, 2010.

[15] Ching-Tien Ho and S Lennart Johnsson.

Distributed routing algorithms for broadcasting and personalized communication in hypercubes.

In International Conference on Parallel Processing (ICPP), pages 640-648, 1986.

Important References V

[16] Cory J Hoelting, Dale A Schoenefeld, and Roger L Wainwright.

A genetic algorithm for the minimum broadcast time problem using a global precedence vector.

In Proceedings of the 1996 ACM Symposium on Applied Computing (SAC), pages 258–262, 1996.

- [17] Andreas Jakoby, Rüdiger Reischuk, and Christian Schindelhauer. The complexity of broadcasting in planar and decomposable graphs. *Discrete Applied Mathematics*, 83(1-3):179–206, 1998.
- [18] Guy Kortsarz and David Peleg.

Approximation algorithms for minimum-time broadcast. SIAM Journal on Discrete Mathematics, 8(3):401–427, 1995.

[19] Edward Maraachlian.

Optimal broadcasting in treelike graphs.

PhD thesis, Concordia University, 2010.

Important References VI

[20] R Ravi.

Rapid rumor ramification: Approximating the minimum broadcast time.

In *Proceedings 35th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 202–213. IEEE, 1994.

[21] Christian Schindelhauer.

On the inapproximability of broadcasting time.

In International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX), pages 226–237. Springer, 2000.

[22] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees.

SIAM Journal on Computing, 10(4):692–701, 1981.

Thanks a bunch!