Problems Related to Classical and Universal List Broadcasting

By: Saber Gholami Supervisor: Professor Hovhannes Harutyunyan

Concordia University, Department of Computer Science and Software Engineering

Nov 9th, 2022

Introduction

- 2 Preliminaries and Literature Review
- Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- 8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works

Introduction

- 2 Preliminaries and Literature Review
- Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- (8) HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- 9 Conclusion and Future Works

- Growth of using computer networks,
- Great attention to all major problems in this area,
- Information dissemination,
- Broadcasting:
 - ◇ Process of distributing a message starting from a single node (*originator*) to all other nodes of the network using the network's links.

Introduction

2 Preliminaries and Literature Review

- 3 Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- (8) HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works

• The network: G = (V, E), originator $u \in V$.

- The network: G = (V, E), originator $u \in V$.
- $B_{cl}(u, G)$: minimum time required to finish the broadcasting from u.
- $B_{cl}(G) = \max\{B_{cl}(u,G) | u \in V(G)\}$

- The network: G = (V, E), originator $u \in V$.
- $B_{cl}(u, G)$: minimum time required to finish the broadcasting from u.
- $B_{cl}(G) = \max\{B_{cl}(u,G)|u \in V(G)\}$
- Two major problems in this area:
 - ◊ Broadcast time problem,
 - ◊ Network design.

Literature Review - Broadcast time problem

- Finding $B_{cl}(u, G)$ or $B_{cl}(G)$,
- Broadcast scheme: ordering of the neighbours of each vertex, depending on the originator:
 - ◊ u: originator,
 - \diamond once v gets informed, it will follow its list L_v^u ,
 - $\diamond\,$ Each vertex has to maintain up to |V| different lists and know the originator to perform broadcasting.

[1] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing, 10(4):692-701, 1981.

Literature Review - Broadcast time problem

- Finding $B_{cl}(u, G)$ or $B_{cl}(G)$,
- Broadcast scheme: ordering of the neighbours of each vertex, depending on the originator:
 - ◊ u: originator,
 - \diamond once v gets informed, it will follow its list L_v^u ,
 - $\diamond\,$ Each vertex has to maintain up to |V| different lists and know the originator to perform broadcasting.
- NP-Hard in arbitrary graphs [1],
- Directions to follow:
 - ◊ Exact solution for a specific graph,
 - ◊ Heuristic,
 - Approximation algorithms.

[1] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing, 10(4):692–701, 1981.

Literature Review - Broadcast time problem - cont.

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list L_v to follow, regardless of the originator.

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..

[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. *Networks*, 27(3), pp.183-196.

Literature Review - Broadcast time problem - cont.

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list L_v to follow, regardless of the originator.
- Two sub-models:
 - \diamond Non-adaptive $B_{na}(G)$: send to all vertices on the list,
 - \diamond **Adaptive** $B_a(G)$: skip the vertices from which the message is received.

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..

[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

Literature Review - Broadcast time problem - cont.

- Broadcasting with universal lists:
 - \diamond Each vertex v has a single list L_v to follow, regardless of the originator.
- Two sub-models:
 - \diamond Non-adaptive $B_{na}(G)$: send to all vertices on the list,
 - ♦ **Adaptive** $B_a(G)$: skip the vertices from which the message is received.
- Introduced indirectly by Slater et al. [1]; for any Tree, $B_{cl}(T) = B_a(T)$.
- Diks and Pelc [2] distinguished between adaptive and non-adaptive models,
 Also proposed several broadcast schemes for different graphs
- The hardness of the problem is unknown.

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4), pp.692-701..

[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. *Networks*, 27(3), pp.183-196.

- Graph G on n vertices is a broadcast graph (bg) under classical model if B_{cl}(G) = [log n],
- A bg with minimum number of edges is called a minimum broadcast graph (mbg),
- The number of edges of an *mbg* on *n* vertices: B(n) or $B^{(cl)}(n)$.

- $B^{(cl)}(n)$ is known for very few n,
- Exact values:
 - n ≤ 32, except for 23, 24, 25.
 $n = 2^k$, Hypercubes | Knödel Graph | Recursive circulant graph
 $n = 2^k 2$, Knödel Graph
- Several upper bounds and lower bounds,
- No result under the universal lists model.

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- (8) HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works

Fully Connected Trees

- A Fully Connected Tree *FCT_n*:
 - \diamond A Clique of size n +
 - ◊ n arbitrary trees.
- Previous result on classical model: An algorithm with a time complexity of $O(|V| \log |V|)^{-1}$

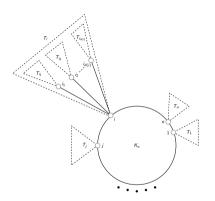


Figure: A Fully Connected Tree FCT_n

¹Harutyunyan, H. A., Maraachlian, E. (2009a). Broadcasting in Fully Connected Trees. In 15th IEEE International Conference on Parallel and Distributed Systems, (ICPADS) (pp. 740–745).

• Instead of finding $B_{cl}(i, FCT_n)$, solve this:

 $\diamond B_{cl}(i, FCT_n) \leq \tau?$

• Instead of finding $B_{cl}(i, FCT_n)$, solve this:

$$\diamond B_{cl}(i, FCT_n) \leq \tau?$$

• Lemma:

$$\diamond \underbrace{\max\left\{\lceil \log n \rceil, \max\{B_{cl}(i, T_i)\}\right\}}_{lb} \leq B_{cl}(i, FCT_n) \leq \underbrace{\lceil \log n \rceil + \max\{B_{cl}(i, T_i)\}}_{ub}$$

- Instead of finding $B_{cl}(i, FCT_n)$, solve this:
 - ♦ $B_{cl}(i, FCT_n) \leq \tau$?
- Lemma:

$$\diamond \underbrace{\max\left\{\lceil \log n \rceil, \max\{B_{cl}(i, T_i)\}\right\}}_{lb} \leq B_{cl}(i, FCT_n) \leq \underbrace{\lceil \log n \rceil + \max\{B_{cl}(i, T_i)\}}_{ub}$$

- Do a binary search on this range.
 - \diamond Invoke the main algorithm (*BR*_{au}) within this method.

- Instead of finding $B_{cl}(i, FCT_n)$, solve this:
 - $\diamond \ B_{cl}(i, FCT_n) \leq \tau?$
- Lemma:

$$\diamond \underbrace{\max\left\{\lceil \log n \rceil, \max\{B_{cl}(i, T_i)\}\right\}}_{lb} \leq B_{cl}(i, FCT_n) \leq \underbrace{\lceil \log n \rceil + \max\{B_{cl}(i, T_i)\}}_{ub}$$

• Do a binary search on this range.

 \diamond Invoke the main algorithm (*BR*_{τ}) within this method.

- Proof of correctness.
- Complexity: $O(|V| \log \log n)$

Introduction

- 2 Preliminaries and Literature Review
- 3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- (8) HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works

Hypercube of Trees

- A Hypercube of Trees HT_k :
 - \diamond A hypercube of dimension k +
 - \diamond 2^k arbitrary trees.
- Current upper bound: An approximation algorithm with a $(2-\varepsilon)$ -approximation ratio 2

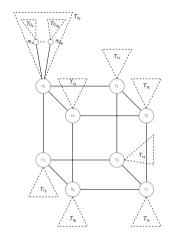


Figure: HT_3 , A hypercube of trees with dimension 3

²Bhabak, P., Harutyunyan, H. A. (2014). Broadcast problem in hypercube of trees. In International Workshop on Frontiers in Algorithmics (pp. 1–12).

- Instead of finding $B_{cl}(u, HT_k)$, solve this:
 - $\diamond \ B_{cl}(u, HT_k) \leq \tau?$

- Instead of finding $B_{cl}(u, HT_k)$, solve this:
 - $\diamond \ B_{cl}(u, HT_k) \leq \tau?$
- Already know the upper bound and lower bound:

$$\diamond \underbrace{\max\left\{k, \max_{0 \le i \le 2^{k} - 1} \{B_{cl}(r_{i}, T_{i})\}\right\}}_{lb} \le B_{cl}(u, HT_{k}) \le \underbrace{k + \max_{0 \le i \le 2^{k} - 1} \{B_{cl}(r_{i}, T_{i})\}}_{ub}$$

- Instead of finding $B_{cl}(u, HT_k)$, solve this:
 - $\diamond \ B_{cl}(u, HT_k) \leq \tau?$
- Already know the upper bound and lower bound:

$$\diamond \underbrace{\max\left\{k, \max_{0 \le i \le 2^{k}-1}\left\{B_{cl}(r_{i}, T_{i})\right\}\right\}}_{lb} \le B_{cl}(u, HT_{k}) \le \underbrace{k + \max_{0 \le i \le 2^{k}-1}\left\{B_{cl}(r_{i}, T_{i})\right\}}_{ub}$$

- Do a binary search on this range.
 - \diamond Invoke the main heuristic (*BR*_{τ}) within this method.

- Instead of finding $B_{cl}(u, HT_k)$, solve this:
 - $\diamond \ B_{cl}(u, HT_k) \leq \tau?$
- Already know the upper bound and lower bound:

$$\diamond \underbrace{\max\left\{k, \max_{0 \le i \le 2^{k} - 1} \{B_{cl}(r_{i}, T_{i})\}\right\}}_{lb} \le B_{cl}(u, HT_{k}) \le \underbrace{k + \max_{0 \le i \le 2^{k} - 1} \{B_{cl}(r_{i}, T_{i})\}}_{ub}$$

- Do a binary search on this range.
 - \diamond Invoke the main heuristic (*BR*_{τ}) within this method.
- Our numerical results on graphs of up to 5 million vertices indicate that the heuristic is able to outperform the best-known algorithm for the same problem in up to 90% of the experiments while speeding up the process up to 30%.

Introduction

- 2 Preliminaries and Literature Review
- 3 Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- (8) HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works

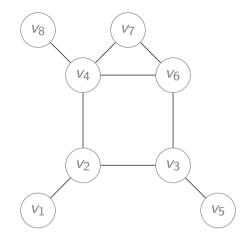
Fully-adaptive Model

- Another sub-model for universal lists,
- A universal list L_v is maintained at each vertex v,
- Once informed, follow the list and skip all informed vertices!
 - ♦ Similarly to the classical model: No unnecessary calls!

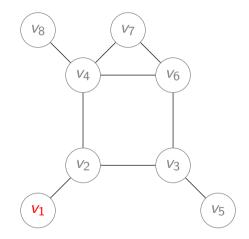
Fully-adaptive Model

- Another sub-model for universal lists,
- A universal list L_v is maintained at each vertex v,
- Once informed, follow the list and skip all informed vertices!

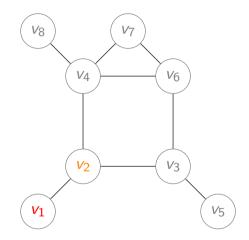
♦ Similarly to the classical model: No unnecessary calls!

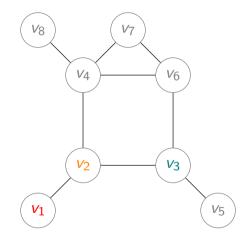

•	Theorem 3.1.	$B_{cl}(G) \leq B_{fa}(G)$	$\leq B_a(G) \leq B_{na}(G),$	for any graph G.
---	--------------	----------------------------	-------------------------------	------------------

	Model	Symbol	No. of unnecessary calls	Required Space	Speed
	Non-adaptive	$B_{na}(G)$	Many	$\sum_{1 \le i \le n} d_i$	Very Slow
•	Adaptive	$B_a(G)$	Few	$2 \times \overline{\sum}_{1 \le i \le n} d_i$	Slow
	Fully Adaptive	$B_{fa}(G)$	0	$2 \times \sum_{1 \le i \le n}^{-1} d_i$	Moderate
	Classical	$B_{cl}(G)$	0	$n \times \sum_{1 \le i \le n}^{n} d_i$	Very Fast

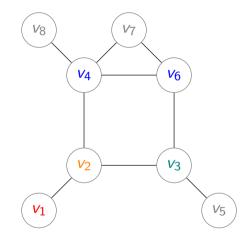

- A broadcast scheme: Matrix $\sigma_{n \times \Delta}$,
 - \diamond Row *i* of σ corresponds to an ordering of neighbors for vertex v_i .
- Set of all possible schemes: Σ .

- A broadcast scheme: Matrix $\sigma_{n \times \Delta}$,
 - \diamond Row *i* of σ corresponds to an ordering of neighbors for vertex v_i .
- Set of all possible schemes: Σ .
- Let $M \in \{na, a, fa\}$ be a model:
 - ♦ $B_M^{\sigma}(v, G)$: the time steps needed to inform all the vertices in G from v while following σ under M,
 - $\diamond \ B^{\sigma}_{\mathcal{M}}(G) = \max_{v \in V} \{B^{\sigma}_{\mathcal{M}}(v,G)\},\$
 - $\diamond \ B_{\mathcal{M}}(G) = \min_{\sigma \in \Sigma} \{B^{\sigma}_{\mathcal{M}}(G)\}.$

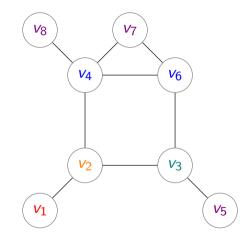

Sender	Ordering of receivers			
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>v</i> ₂	V ₃	<i>V</i> 4	<i>v</i> ₁	Null
V ₃	<i>v</i> ₂	V ₆	<i>V</i> 5	Null
<i>v</i> ₄	<i>v</i> ₂	v ₆	<i>v</i> 8	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
<i>v</i> ₆	V3	<i>V</i> 7	<i>V</i> 4	Null
V7	V ₆	V4	Null	Null
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null


Sender	Ordering of receivers			
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>v</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>v</i> ₁	Null
V ₃	<i>v</i> ₂	V ₆	<i>V</i> 5	Null
<i>v</i> ₄	<i>v</i> ₂	v ₆	<i>v</i> ₈	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
<i>v</i> ₆	V3	<i>V</i> 7	<i>V</i> 4	Null
V7	V ₆	V4	Null	Null
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null

Sender	Ordering of receivers			
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>v</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>v</i> ₁	Null
V ₃	<i>v</i> ₂	V ₆	<i>V</i> 5	Null
<i>v</i> ₄	<i>v</i> ₂	v ₆	<i>v</i> 8	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
<i>V</i> 6	V ₃	<i>V</i> 7	V4	Null
V7	V ₆	V4	Null	Null
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null



Sender	Ordering of receivers			
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>v</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>v</i> ₁	Null
<i>V</i> 3	<i>v</i> ₂	V ₆	<i>V</i> 5	Null
<i>v</i> ₄	<i>v</i> ₂	v ₆	<i>v</i> 8	<i>V</i> 7
<i>V</i> 5	V ₃	Null	Null	Null
<i>v</i> ₆	V ₃	<i>V</i> 7	V4	Null
V7	V ₆	V4	Null	Null
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null


Fully-adaptive model - Example

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	V3	<i>V</i> 4	<i>v</i> ₁	Null			
V ₃	<i>v</i> ₂	<i>v</i> ₆	<i>V</i> 5	Null			
<i>v</i> ₄	<i>v</i> ₂	v ₆	<i>v</i> ₈	<i>V</i> 7			
<i>V</i> 5	V3	Null	Null	Null			
<i>V</i> 6	V3	<i>V</i> 7	V4	Null			
V7	V ₆	V4	Null	Null			
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null			

Fully-adaptive model - Example

Sender	Ordering of receivers						
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null			
<i>v</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>v</i> ₁	Null			
<i>V</i> 3	<i>v</i> ₂	<i>v</i> ₆	<i>V</i> 5	Null			
<i>v</i> ₄	<i>v</i> ₂	v ₆	<i>v</i> ₈	<i>V</i> 7			
<i>V</i> 5	V ₃	Null	Null	Null			
<i>V</i> 6	V3	<i>V</i> 7	<i>V</i> 4	Null			
V7	V ₆	V4	Null	Null			
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null			

Fully-adaptive model - Example

Sender	Orc	lering o	of recei	vers
<i>v</i> ₁	<i>v</i> ₂	Null	Null	Null
<i>v</i> ₂	V3	<i>V</i> 4	<i>v</i> ₁	Null
<i>V</i> 3	<i>v</i> ₂	<i>v</i> ₆	<i>V</i> 5	Null
<i>V</i> 4	<i>v</i> ₂	v ₆	<i>v</i> ₈	<i>V</i> 7
<i>V</i> 5	V3	Null	Null	Null
<i>v</i> ₆	V3	<i>V</i> 7	<i>V</i> 4	Null
<i>V</i> 7	v ₆	<i>V</i> 4	Null	Null
<i>v</i> ₈	<i>v</i> ₄	Null	Null	Null

• $B_{fa}^{\sigma}(v_1, G) = 4$, while $B_a^{\sigma}(v_1, G) = 5$ and $B_{na}^{\sigma}(v_1, G) = 6$.

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- Unique and heavy message,
- ◊ The message: header + payload,

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- Unique and heavy message,
- ◊ The message: header + payload,

• Architecture:

- $\diamond\,$ How to know the state of each neighbour?
 - ◊ Push model,
 - ◇ Pull model,

Fully-adaptive Model - AAA

• Assumptions:

- None-faulty network with established links,
- Unique and heavy message,
- ◊ The message: header + payload,

• Architecture:

- How to know the state of each neighbour?
 - ◊ Push model,
 - ◊ Pull model,

• Applications:

- ♦ Update procedure in SDNs:
 - ◊ Changing routing policies, adjusting links' weights, etc.
 - ◊ The data plane only forwards packets,
 - $\diamond~$ Routing and load balancing decisions are made in a centralized controller,
 - The network manager must optimize the forwarding tables (broadcast schemes).

Results on fully-adaptive model

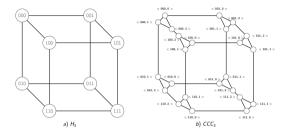
• Trees T:

♦ Theorem 5.2.1. $B_{cl}(T) = B_{fa}(T) = B_a(T)$.

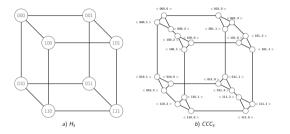
Results on fully-adaptive model

- Trees T:
 - ♦ Theorem 5.2.1. $B_{cl}(T) = B_{fa}(T) = B_{a}(T)$.
- Grids $G_{m \times n}$:
 - ♦ Corollary 5.2.1. $B_{fa}(G_{m \times n}) = m + n 2$.

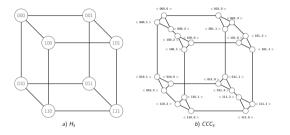
Results on fully-adaptive model


• Trees T:

♦ Theorem 5.2.1. $B_{cl}(T) = B_{fa}(T) = B_{a}(T)$.

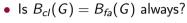

- Grids $G_{m \times n}$:
 - ♦ **Corollary 5.2.1.** $B_{fa}(G_{m \times n}) = m + n 2.$
- Tori $T_{m \times n}$:
 - ♦ Theorem 5.2.2.

 $\diamond B_{fa}(T_{m \times n}) = \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor, \text{ if } n \text{ and } m \text{ are even,}$


- ♦ $B_{fa}(T_{m \times n}) = \lfloor \frac{\overline{n}}{2} \rfloor + \lfloor \frac{\overline{m}}{2} \rfloor + 1$, if one of *m* and *n* is even and the other one is odd,
- $\diamond \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 1 \le B_{fa}(T_{m \times n}) \le \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 2, \text{ if both } m \text{ and } n \text{ are odd.}$

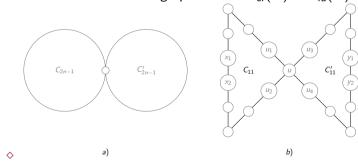
- Hypercubes *H_d*:
 - ♦ **Theorem 7.1.2.** $B_{fa}(H_d) = d$.

- Hypercubes *H_d*:
 - ♦ **Theorem 7.1.2.** $B_{fa}(H_d) = d$.
 - ◇ **Corollary 7.1.4.** Hypercube H_d is an mbg on 2^d vertices under the fully-adaptive model.


- Hypercubes *H_d*:
 - ♦ **Theorem 7.1.2.** $B_{fa}(H_d) = d$.

◊ Corollary 7.1.4. Hypercube H_d is an mbg on 2^d vertices under the fully-adaptive model.

• Cube Connected Cycles *CCC_d*:


♦ Theorem 5.2.3. $B_{fa}(CCC_d) = \lceil \frac{5d}{2} \rceil - 1.$

• Is
$$B_{cl}(G) = B_{fa}(G)$$
 always?

◊ No!

♦ **Proposition 5.2.1.** There exists graph G with $B_{cl}(G) < B_{fa}(G)$:

Outline

Introduction

- 2 Preliminaries and Literature Review
- 3 Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

- 7 Broadcast Graphs under the Fully-adaptive Model
- \delta HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works

Results on non-adaptive model

- Complete k-ary trees $T_{k,h}$:
 - ♦ **Theorem 6.1.1.** $B_{na}(T_{k,h}) = kh + 2h 1$.

Results on non-adaptive model

- Complete k-ary trees $T_{k,h}$:
 - ♦ Theorem 6.1.1. $B_{na}(T_{k,h}) = kh + 2h 1$.
- Binomial trees T_d :
 - ♦ **Proposition 6.1.1.** $B_{na}(T_d) = 3d 2.$

Results on non-adaptive model

- Complete k-ary trees $T_{k,h}$:
 - ♦ Theorem 6.1.1. $B_{na}(T_{k,h}) = kh + 2h 1$.
- Binomial trees T_d :
 - ♦ **Proposition 6.1.1.** $B_{na}(T_d) = 3d 2.$
- Complete Bipartite graph $K_{m \times n}$:
 - ♦ Theorem 6.1.2. $B_{cl}(K_{m \times n}) = \lceil \log n \rceil + 1 + \max\{\lceil \frac{m 2^{\lceil \log n \rceil}}{n} \rceil, 0\}.$
 - ♦ Theorem 6.1.3. $B_{na}(K_{m \times n}) \leq B_{cl}(K_{m \times n}) + 3 \times \lceil \sqrt{B_{cl}(K_{m \times n})} \rceil$.

Results on non-adaptive model - cont.

• A general upper bound for trees:

♦ Theorem 6.1.4. $B_{na}(T) \leq B_{cl}(T) + \lfloor \frac{diam(T)}{2} \rfloor$.

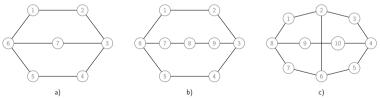
• Tightest bounds on trees:

♦ Theorem 6.1.5.

$$\max\left\{B_{cl}(T)+1, \lceil \frac{3.diam(T)-1}{2}\rceil\right\} \le B_{na}(T) \le \min\left\{\frac{B_{cl}(T)+\lfloor \frac{diam(T)}{2}\rfloor, b_{cl}(T)+diam(T)\right\}$$
(1)

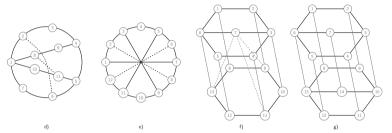
Outline

Introduction


- 2 Preliminaries and Literature Review
- 3 Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting

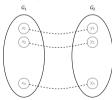
7 Broadcast Graphs under the Fully-adaptive Model

- \delta HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm
- Onclusion and Future Works


Broadcast graphs under fully-adaptive model

- Graph G on n vertices is a broadcast graph (bg) if $B_{fa}(G) = \lceil \log n \rceil$,
- A bg with the minimum number of edges is called a minimum broadcast graph (mbg),
- The number of edges of an *mbg* on *n* vertices: $B^{(fa)}(n)$.
- Lemma 7.1.1. If there is a graph G on n vertices for which $B_{fa}(G) = \lceil \log n \rceil$, then $B^{(cl)}(n) \leq B^{(fa)}(n)$.
- mbg's for $n \leq 10$:

Broadcast graphs under fully-adaptive model - cont.


• bg's for $11 \le n \le 14$:

n	3	4	5	6	7	8	9	10	11	12	13	14
Lower bound on $B^{(fa)}(n)$	2	4	5	6	8	12	10	12	13	15	18	21
Upper bound on $B^{(fa)}(n)$	2	4	5	6	8	12	10	12	15	17	23	23

Broadcast graphs under fully-adaptive model - cont.

- General construction of bg's:
 - ♦ Lemma 7.1.2. Consider a graph G = (V, E) with *n* vertices, *m* edges, and $B_{fa}(G) = \tau$. It is always possible to construct a graph G' = (V', E') with 2*n* vertices, 2*m* + *n* edges, and $B_{fa}(G') = \tau + 1$.

Broadcast graphs under fully-adaptive model - cont.

• This yields 4 infinite families of bg's under fully-adaptive model:

◇ Theorem 7.1.1. For any integer
$$k = \lceil \log n \rceil \ge 4$$
:
$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-4}) \le \frac{n \lceil \log n \rceil}{2} - \frac{8n}{9},$$

$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-3}) \le \frac{n \lceil \log n \rceil}{2} - \frac{4n}{5},$$

$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-2}) \le \frac{n \lceil \log n \rceil}{2} - \frac{n}{2},$$

$$B^{(f_a)}(n) = B^{(f_a)}(2^{k-1} + 2^{k-2} + 2^{k-3}) \le \frac{n \lceil \log n \rceil}{2} - \frac{5n}{14}.$$

Comparing broadcast time of various graphs

Graph G	$B_{cl}(G)$	$B_{fa}(G)$	$B_a(G)$	$B_{na}(G)$
Path P _n	n - 1	n-1	n - 1	$\left\lceil \frac{3n}{2} \right\rceil - 2$
Cycle C _n	$\left\lceil \frac{n}{2} \right\rceil$,	$\left\lceil \frac{n}{2} \right\rceil$	$\left\lceil \frac{n}{2} \right\rceil$	$\lfloor \frac{2n}{3} \rfloor$
Star S _n	n-1	n-1	n-1	n
Complete graph K_n	$\lceil \log n \rceil$	$\leq \lceil \log n \rceil +$	$\leq \lceil \log n \rceil +$	$\leq \lceil \log n \rceil +$
		$2\left[\sqrt{\log n}\right]$	$2\left\lceil \sqrt{\log n} \right\rceil$	$2\left\lceil \sqrt{\log n} \right\rceil$
Complete Bipartite	$t_1 = \lceil \log n \rceil + 1 + 1 \rceil$	$\leq t_1 + 3\lceil \sqrt{t_1} ceil$	$\leq t_1 + 3\lceil \sqrt{t_1} ceil$	$\leq t_1 + 3\lceil \sqrt{t_1} \rceil$
$K_{m \times n}$	$\max\{\lceil \frac{m-2\lceil \log n\rceil}{n}\rceil, 0\}$			
Complete <i>k</i> -ary	kh + h - 1	kh + h - 1	kh + h - 1	kh+2h-1
tree $T_{k,h}$				
Binomial tree T_d	2d - 1	2d - 1	2d - 1	3 <i>d</i> − 2
Grid $G_{m \times n}$	m + n - 2	m+n-2	m + n - 2	m+n-1
Tori $T_{m \times n}$	$\lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor$, if <i>m</i> and	$\lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor$, if <i>m</i> and	$\leq \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 3$	$\leq \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 5$
	n are even	n are even		
	erwise	only one of <i>m</i> and		
		<i>n</i> is even		
		$\leq \lfloor \frac{n}{2} \rfloor + \lfloor \frac{m}{2} \rfloor + 2,$ otherwise		
Hypercube H _d	d	d	$\leq \frac{d(d-1)}{2} + 1$	$\leq \frac{d(d+1)}{2} + 1$
Cube Connected	$\left\lceil \frac{5d}{2} \right\rceil - 1$	$\left\lceil \frac{5d}{2} \right\rceil - 1$	$\leq 2\left[\frac{5d}{2}\right] - 1$	$\leq 3\left[\frac{5d}{2}\right] - 3$
Cycle CCC _d	-	~	-	-
Shuffle Exchange	2d - 1	$\leq 4d - 1$	$\leq 4d-1$	$\leq 6d-3$
SEd				
De Bruijn <i>DB</i> d	$\leq \frac{3}{2}(d+1)$,	$\leq 3d + 1$	$\leq 3d + 1$	\leq 4 <i>d</i>
	\geq 1.3171 <i>d</i>			

Outline

Introduction

- 2 Preliminaries and Literature Review
- 3 Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

Onclusion and Future Works

Introduction

- Proposing the first heuristic for broadcasting with universal lists:
- Given a graph G and a model $M \in \{fa, a, na\}$, find a broadcast scheme $\sigma \in \Sigma$ that minimizes $B^{\sigma}_{M}(G)$.
- Why this problem is difficult?

Introduction

- Proposing the first heuristic for broadcasting with universal lists:
- Given a graph G and a model M ∈ {fa, a, na}, find a broadcast scheme σ ∈ Σ that minimizes B^σ_M(G).
- Why this problem is difficult?
 - ◇ Proposition 8.2.1. For a graph G on n vertices, where the degree of vertex i is d_i, the size of search space for the problem of broadcasting using universal list is as follows:

$$\Sigma_{(G)}| = \prod_{i=1}^{n} \sum_{j=0}^{d_i} \left(\binom{d_i}{j} \times j! \right)$$
(2)

Exponential growth!

- HUB-GA: a <u>H</u>euristic for <u>U</u>niversal list model of <u>B</u>roadcasting with <u>G</u>enetic <u>A</u>lgorithm.
- GA: a population based search algorithm.

- HUB-GA: a <u>H</u>euristic for <u>U</u>niversal list model of <u>B</u>roadcasting with <u>G</u>enetic <u>A</u>lgorithm.
- GA: a population based search algorithm.
 - ♦ Each solution to the problem is a Chromosome,
 - ♦ The fitness of each individual is evaluated with a fitness function.
 - ◊ To improve the quality of solutions, the best solutions are selected for reproduction using two primary operations of GA: Crossover and Mutation.
 - ◊ GA tries to find a suitable solution by repeating this process over multiple generations.

Algorithm 6 HUB-GA

- 1: Generate random population;
- 2: Calculate fitness score;
- 3: while not converged do
- 4: Crossover;
- 5: Mutation;
- 6: Calculate fitness score;
- 7: Acceptance;
- 8: end while
- 9: return The best chromosome

• Consider a graph G with n vertices, where d_i = the degree of vertex *i*.

- Consider a graph G with n vertices, where d_i = the degree of vertex *i*.
- Gene *i*, *g*^(*i*): An arbitrary ordering of the neighbors of vertex *i* with size at most *d_i*.

- Consider a graph G with n vertices, where d_i = the degree of vertex *i*.
- Gene *i*, *g*^(*i*): An arbitrary ordering of the neighbors of vertex *i* with size at most *d_i*.
- Chromosome is a collection of n genes: $g^{(1)}, g^{(2)}, \cdots, g^{(n)}$.
 - \diamond A chromosome is a matrix σ with *n* rows (or *n* genes) and Δ columns.
 - ◊ In GA, a chromosome is a possible solution for the problem: any σ ∈ Σ may be an optimal broadcast scheme.

1	2	3		
2	1	4	3	
3	2	4	1	5
4	3	2	6	
5	6	3		
6	5	4		

- Consider a graph G with n vertices, where d_i = the degree of vertex *i*.
- Gene *i*, *g*^(*i*): An arbitrary ordering of the neighbors of vertex *i* with size at most *d_i*.
- Chromosome is a collection of n genes: $g^{(1)}, g^{(2)}, \cdots, g^{(n)}$.
 - \diamond A chromosome is a matrix σ with *n* rows (or *n* genes) and Δ columns.
 - $\diamond \ \, \mbox{ In GA, a chromosome is a possible solution for the problem:} \\ \mbox{ any } \sigma \in \Sigma \ \mbox{may be an optimal broadcast scheme.}$
 - Guessing the optimal chromosome out of many possible solutions is impossible.

1	2	3		
2	1	4	3	
3	2	4	1	5
4	3	2	6	
5	6	3		
6	5	4		

- Consider a graph G with n vertices, where d_i = the degree of vertex *i*.
- Gene *i*, *g*^(*i*): An arbitrary ordering of the neighbors of vertex *i* with size at most *d_i*.
- Chromosome is a collection of n genes: $g^{(1)}, g^{(2)}, \cdots, g^{(n)}$.
 - \diamond A chromosome is a matrix σ with *n* rows (or *n* genes) and Δ columns.
 - $\diamond \ \, \mbox{ In GA, a chromosome is a possible solution for the problem:} \\ \mbox{ any } \sigma \in \Sigma \ \mbox{may be an optimal broadcast scheme.}$
 - ◊ Guessing the optimal chromosome out of many possible solutions is impossible.
- The first step of HUB-GA: generate |p| solutions randomly, called the first *population*.

1	2	3		
2	1	4	3	
3	2	4	1	5
4	3	2	6	
5	6	3		
6	5	4		

HUB-GA: Fitness function

- The fitness function, $f(\sigma)$, evaluates the fitness of a chromosome σ .
- $f(\sigma)$ should be minimized when σ is an optimal solution.

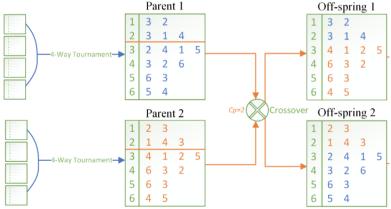
HUB-GA: Fitness function

- The fitness function, $f(\sigma)$, evaluates the fitness of a chromosome σ .
- $f(\sigma)$ should be minimized when σ is an optimal solution.

 $\diamond f_1(\sigma)$: the broadcast time:

$$f_1(\sigma) = \max_{u \in V(G)} \{ B^{\sigma}_M(u, G) \} = B^{\sigma}_M(G)$$
(3)

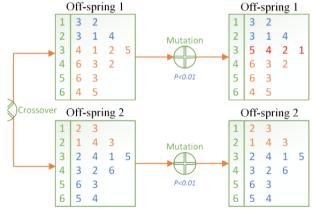
 \diamond $f_2(\sigma)$: average broadcast time:


$$f_2(\sigma) = \frac{\sum_{u \in V(G)} B_M^{\sigma}(u, G)}{n}$$
(4)

• Two chromosomes are selected as the parents (*selection* phase), and then two children (called *offsprings*) are generated by *crossover*.

- Two chromosomes are selected as the parents (*selection* phase), and then two children (called *offsprings*) are generated by *crossover*.
- Selection: K-way tournament: select the fittest chromosome among K randomly chosen chromosomes.

HUB-GA: Crossover


- Two chromosomes are selected as the parents (*selection* phase), and then two children (called *offsprings*) are generated by *crossover*.
- Selection: K-way tournament: select the fittest chromosome among K randomly chosen chromosomes.

- Mutation: A gene of an offspring is changed randomly with a small probability.
- In our algorithm: shuffle the ordering of a randomly selected gene.

HUB-GA: Mutation

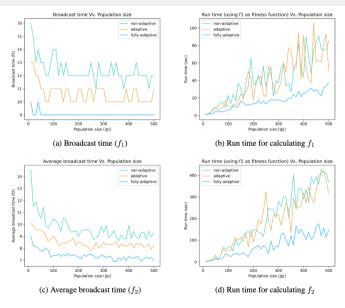
- Mutation: A gene of an offspring is changed randomly with a small probability.
- In our algorithm: shuffle the ordering of a randomly selected gene.

- After doing Crossover and Mutation, the population size grows.
- One possible solution to keep the current generation manageable with limited resources is to retain the original population size by allowing a fixed number of chromosomes to survive into the next generation.

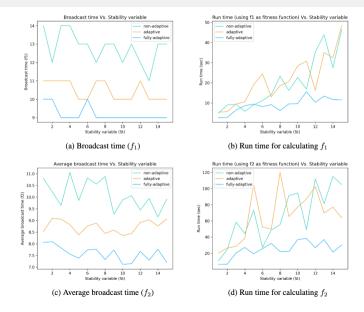
- After doing Crossover and Mutation, the population size grows.
- One possible solution to keep the current generation manageable with limited resources is to retain the original population size by allowing a fixed number of chromosomes to survive into the next generation.

 \diamond *K*-way tournament.

- The execution of HUB-GA terminates if, after S_t iterations, the fitness score of the fittest individual does not change drastically (*convergence*).
- Once the stopping criterion is met, the best chromosome (solution) from the current generation and its fitness score are returned as the final answer.


- The first heuristic for this problem,
- Working for arbitrary graphs,
- Working for any model under universal lists
- Possibility of defining various fitness scores,
- Providing the broadcast scheme.

HUB-GA: Experimental setup

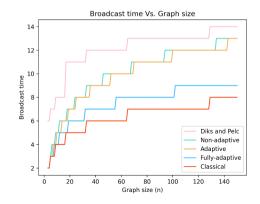

Experiment	What?	Why?	How?	Graph(s)
Experiment 1	Parameter Tuning	To see the impact of changing HUB-GA parameters on its per- formance.	For a graph G, we change parameters $ p $ and S_t , while reporting $f_1(\sigma)$ and $f_2(\sigma)$ and the run time.	Karate club network (Zachary, 1977)
Experiment 2	Performance com- parison vs. Classical model	To see whether the found broadcast time under universal lists model approaches its optimal value or not.	By calculat- ing the ratio of $B_M(G)/B_{cl}(G)$ for different intercon- nection networks.	Well-known inter- connection networks for which the value of $B_{cl}(G)$ is known.
Experiment 3	Performance com- parison vs. degree- based heuristics	To see whether HUB-GA outper- forms other degree- based heuristics or not.	By comparing the performance of our heuristic with three heuristics for clique-like structure graphs.	Clique-like graphs: Ring of cliques (Kamiński, Prałat, & Théberge, 2021), and Windmill graph (Bermond, 1979)
Experiment 4	Performance com- parison vs. state-of- the-art heuristics	To see whether HUB-GA gets close to other heuris- tics for classical broadcasting or not.	By comparing the performance of our heuristic with two lower bounds and six upper bounds.	Interconnection Net- works and Complex networks with small- world model (Rossi & Ahmed, 2015)

- Change |p| and S_t , report $f_1(\sigma)$ and $f_2(\sigma)$ and the run time.
- Choosing |p| is a trade-off. The bigger the |p|:
 - $\diamond\,$ The higher the chance of finding a near-optimal solution in early iterations.
 - ◊ The higher the computational cost.
- The same is true for S_t

HUB-GA: Experiment 1, $|\rho|$

HUB-GA: Experiment 1, S_t

• Compare the GA heuristic for the universal list model with known bounds on the classical model for commonly used interconnection networks.


HUB-GA: Experiment 2

Graph G	n	$\frac{B_{fa}^{\sigma}(G)}{B_{cl}(G)}$	$\frac{B_a^{\sigma}(G)}{B_{cl}(G)}$	$\frac{B_{na}^{\sigma}(G)}{B_{cl}(G)}$
Path P_n	$2 \le n \le 1000$	1.00*	1.00*	1.49*
Cycle C_n	$3 \le n \le 1000$	1.00*	1.00*	1.32*
Star S_n	$2 \le n \le 1000$	1.00*	1.00*	1.01*
Complete Graph K_n	$3 \le n \le 50$	1.14	1.39	1.42
Grid $G_{n \times m}$	$2 \leq n,m \leq 10$	1.07	1.08	1.35
Tori $T_{n \times m}$	$2 \leq n,m \leq 10$	1.09	1.24	1.55
Hypercube H_d	$2 \leq d \leq 9$	1.06	1.41*	1.68*
Cube Connected Cycle CCC_d	$2 \leq d \leq 7$	1.14	1.18*	1.52*
Shuffle Exchange SE_d	$3 \le d \le 9$	1.06*	1.09*	1.44*
De Bruijn DB_d	$3 \le d \le 9$	1.09*	1.18*	1.51*

HUB-GA: Experiment 2

• **Conjecture 8.4.1.** For a sufficiently large *n*, the broadcast time of a complete graph K_n is bounded as follows:

 $\lceil \log n \rceil = B_{cl}(K_n) < B_{fa}(K_n) < B_a(K_n) \le B_{na}(K_n) \le \lceil \log n \rceil + 2\lceil \sqrt{\log n} \rceil$ (5)

HUB-GA: Experiment 3

- Compare the GA heuristic with degree-based heuristics:
 - ◊ Ran. Seq.: The ordering of a vertex is uniformly random.
 - ◊ Inc. Deg.: Neighbors of a vertex are sorted in ascending order based on their degree.
 - ◊ Dec. Deg.: Neighbors of a vertex are sorted in descending order based on their degree.
- For graphs with clique-like subgraphs:

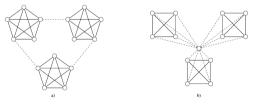


Figure 8.8: a) Ring of Clique $RC_{3,5}$, b) Windmill graph $W_{5,3}$

HUB-GA: Experiment 3, RC_{n,m}

D	Zn.m								Non-adapti	ve model					
1	$\nu_{n,m}$	V	E		Mir	1			Avg	ş			Ma	x	
n	m			Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA	Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA	Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA
3	3	9	12	5	5	6	5	6.22	6.11	6.77	5.33	7.4	7	7	6
4	3	12	16	6.6	7	9	6	8.38	7.91	9.41	6.83	10.4	9	10	8
5	3	15	20	8.4	8	10	7	9.93	9	10.86	8.33	12	10	12	10
6	3	18	24	10.2	9	12	9	12.04	10.44	13.77	9.66	13.8	12	15	10
3	4	12	21	6.2	6	9	5	8.06	7.08	9.5	5.83	9.6	8	10	7
4	4	16	28	8.4	7	12	7	10.33	8.81	13.56	7.81	12.6	10	15	9
5	4	20	35	10.8	8	15	8	13.05	10.2	16.1	9.45	15.8	12	17	12
6	4	24	42	12.2	10	18	10	14.91	11.79	19.95	11.29	17.8	14	22	13
3	5	15	33	7.2	7	12	6	9.78	7.93	12.4	7.2	11.8	9	14	9
4	5	20	44	8.8	8	16	7	12.37	9.9	17.75	8.65	15.4	11	19	11
5	5	25	55	11.6	9	21	8	14.55	11.12	21.84	10.04	17.6	13	23	12
6	5	30	66	14	11	24	11	17.91	12.73	26.86	12.13	21.8	14	29	14
3	6	18	48	8.8	8	15	6	10.94	8.77	15.77	7.55	13	10	17	9
4	6	24	64	11	9	20	7	14.52	10.29	21.83	9.2	17.8	12	24	11
5	6	30	80	14	11	25	9	17.22	12	26.53	10.8	20	13	27	13
6	6	36	96	16.4	11	30	11	20.59	13.66	33.05	12.44	23.8	16	36	14

HUB-GA: Experiment 3, RC_{n,m}

D	$C_{n,m}$								Adaptive	model					
1	$_{n,m}$	V	E Min Avg			g	Max								
n	m	1		Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA	Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA	Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA
3	3	9	12	4.4	4	5	4	4.8	4.33	5	4.33	5	5	5	5
4	3	12	16	5.6	5	6	5	6.4	5.33	6.66	5.33	7	6	7	6
5	3	15	20	6.8	6	8	6	7.58	6.33	8	6.33	8	7	8	7
6	3	18	24	8	7	9	7	8.86	7.33	9.38	7.61	10	8	10	8
3	4	12	21	5.6	5	6	4	6.13	5.41	6.83	5.08	6.8	6	7	6
4	4	16	28	7	6	9	5	8.36	6.5	9.12	6.25	9.4	7	10	7
5	4	20	35	8.4	7	11	6	9.77	7.25	11	7.25	10.8	8	11	8
6	4	24	42	10.4	8	12	8	12.15	8.29	12.91	8.41	13.6	9	13	9
3	5	15	33	6.6	5	8	5	7.71	6	8.13	5.6	8.6	7	9	6
4	5	20	44	7.8	6	11	6	9.45	7.35	11.35	6.8	11	8	12	8
5	5	25	55	9.8	7	12	7	11.52	7.64	12.4	7.96	13.2	8	13	9
6	5	30	66	12	8	14	8	13.97	9.16	15.26	9.03	15.8	10	17	10
3	6	18	48	6.8	6	9	6	8.46	7.05	9.55	6.44	9.6	8	10	7
4	6	24	64	9	7	13	6	11.12	7.69	13.04	7.45	13	8	14	8
5	6	30	80	11	8	14	8	13.15	8.93	14.5	8.86	14.8	10	15	10
6	6	36	96	13.8	9	17	8	15.66	9.83	18	9.8	17.6	11	19	11

HUB-GA: Experiment 3, RC_{n,m}

D	$C_{n,m}$								Fully-adapti	ve model					
1	$_{n,m}$	V	V E Min			Avg	ş		Max						
n	m	1		Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA	Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA	Ran.Seq.	Dec.Deg.	Inc.Deg.	HUB-GA
3	3	9	12	4.4	4	5	4	4.86	4.33	5	4.33	5	5	5	5
4	3	12	16	5.8	5	6	5	6.25	5.33	6.41	5.33	7	6	7	6
5	3	15	20	6.6	6	8	6	7.53	6.33	8	6.33	8	7	8	7
6	3	18	24	8	7	9	7	8.73	7.33	9.44	7.33	9.2	8	10	8
3	4	12	21	5.4	4	6	5	5.9	5	6.66	5	6.6	6	7	5
4	4	16	28	6.6	5	8	5	7.82	5.87	8.81	5.5	9	7	10	6
5	4	20	35	8.2	6	11	6	9.36	7.1	11	7.05	10.4	8	11	8
6	4	24	42	10.2	7	13	7	11.23	8.25	13.29	8.16	13	9	14	9
3	5	15	33	6	5	7	5	6.7	5.6	7.86	5.73	7.2	6	9	6
4	5	20	44	7.6	6	9	6	9.05	6.66	9.9	6.65	10.2	7	11	7
5	5	25	55	9.4	7	12	7	10.7	7.92	13.04	7.8	12.2	9	14	9
6	5	30	66	11	8	14	8	12.54	8.6	15.03	9.16	14	9	16	10
3	6	18	48	6.8	6	8	5	7.76	6.66	9.27	5.88	8.6	7	10	7
4	6	24	64	8.6	7	12	7	10.17	7.95	12.83	7.5	11.6	9	14	8
5	6	30	80	10.4	7	13	8	11.66	8.26	14.03	9.1	13	9	15	10
6	6	36	96	11.8	8	16	9	13.71	9.25	17.16	10.27	15.4	10	19	11

- Compare the GA heuristic with state-of-the-art heuristics for classical broadcasting:
 - \diamond Two lower bounds on $B_{cl}(v, G)$: TLB, LBB,
 - ♦ Six upper bounds on $B_{cl}(v, G)$: TreeBlock, NTBA, NEWH, ILP, ACS, BRKGA.
- For two types of networks:
 - ◊ Interconnection networks (44 instances),
 - ♦ Connected complex networks (30 instances).

HUB-GA: Experiment 4, Interconnection networks

Instance	V	E	Density	LB on	$B_d(v, G)$	UB on $B_{cl}(v, 0)$	3)					HUB-GA		
	11	12	Density	TLB	LBB	TreeBlock	NTBA	NEWH	ILP	ACS	BRKGA	$B_{fa}^{\sigma}(G)$	$B_a^{\sigma}(G)$	$B_{na}^{\sigma}(G)$
H_2	4	4	0.6667	2		-	-	-	-	-		2	2	2
H_3	8	12	0.4285	3	-	-	-	-	-	-	-	3	4	4
H_4	16	32	0.2667	4	-	-	-	-	4	-	-	4	5	6
H_5	32	80	0.1613	5	5	5	5	5	5	5	5	5	7	9
H_6	64	192	0.0952	6	6	6	7	6	6	6	6	7	9	11
H_7	128	448	0.0551	7	7	7	9	7	7	7	7	8	11	14
H_8	256	1024	0.0314	8	8	8	11	8	8	8	9	9	13	16
H_9	512	2304	0.0176	9	9	9	14	9	9	9	10	10	15	18
CCC_2	8	12	0.4285	3					-	-		4	4	5
CCC_3	24	36	0.1304	5	6		6	7	6	6	6	8	8	10
CCC_4	64	94	0.0476	6	8		7	9	9	9	9	11	11	15
CCC_5	160	240	0.0189	8	10		11	12	11	12	11	14	15	19
CCC_6	384	576	0.0078	9	13		14	14	13	14	13	17	18	24
DB_3	8	16	0.5714	3			4	4				4	4	5
DB_4	16	32	0.2583	4	4	4	5	5	-	5	5	6	6	7
DB_5	32	64	0.1270	5	5	7	7	7	-	6	6	7	8	10
DB_6	64	128	0.0630	6	6	8	8	8	-	8	8	9	10	13
DB_7	128	256	0.0314	7	7	12	10	10	-	10	9	11	12	16
DB_8	256	512	0.0157	8	8	12	12	12	-	12	11	13	14	19
DB_9	512	1024	0.0078	9	9	14	13	13		14	13	15	17	22
SE_2	4	5	0.8334	2					•			3	3	4
SE_3	8	12	0.4285	3			5	5	-	-		5	5	6
SE_4	16	21	0.1750	4	7		7	7	7	7	7	7	7	9
SE_5	32	46	0.0927	5	9		9	9	9	9	9	9	10	13
SE_6	64	93	0.0461	6	11		11	11	11	11	11	12	12	16
SE_7	128	190	0.0234	7	13		13	13	13	13	13	15	15	20
SE_8	256	381	0.0117	8	15		15	15	15	15	15	17	17	25
SE_9	512	766	0.0059	9	17		18	18	17	17	18	20	21	28
$H_{10,30}$	30	150	0.3448	5	3	6			5	5	5	7	9	9
$H_{11,50}$	50	275	0.2245	6	3	7	-	-	6	6	6	8	10	11
$H_{20,50}$	50	500	0.4082	6	3	8	-	-	6	6	6	8	10	11
$H_{21,50}$	50	525	0.4286	6	2	7	-	-	6	6	6	7	10	10
$H_{2,100}$	100	100	0.0202	7	50	50	-	-	50	50	50	50	50	67
$H_{2,17}$	17	17	0.1250	4	8	9	-	-	9	9	9	9	9	11
$H_{2,30}$	30	30	0.0690	5	15	15	-	-	15	15	15	15	15	20
$H_{2,50}$	50	50	0.0408	6	25	25	-	-	25	25	25	25	25	29
$H_{3,17}$	17	26	0.1912	4	4	5	-	-	5	5	5	6	6	8
$H_{3,30}$	30	45	0.1034	5	8	9	-	-	9	9	9	9	9	12
$H_{3,50}$	50	75	0.0612	6	13	14	-	-	14	14	14	14	15	17
$H_{5,17}$	17	43	0.3162	4	3	5	-	-	5	5	5	5	6	7
$H_{6,17}$	17	51	0.3750	4	3	5	-	-	5	5	5	6	6	7
$H_{7,17}$	17	60	0.4412	4	2	5	-	-	5	5	5	5	6	6
$H_{8,30}$	30	120	0.2759	5	4	6	-	-	5	6	5	8	9	10
$H_{9,30}$	30	135	0.3103	5	3	6	-	-	5	5	5	7	8	9

HUB-GA: Experiment 4, Connected complex networks

Instance	V	E	Density	LB on $B_{cl}(v, G)$		UB on $B_{cl}(v, 0)$			HUB-GA						
Instance	141	12	Density	TLB	LBB	TreeBlock	NTBA	NEWH	ILP	ACS	BRKGA	$B_{fa}^{\sigma}(G)$	$B_a^{\sigma}(G)$	$B_{na}^{\sigma}(G)$	
SW-100-3-0d1-trial1	100	100	0.0202	7	61	-	-	-	61	61	61	68	68	104	
SW-100-3-0d2-trial1	100	100	0.0202	7	31	-	-	-	31	31	31	40	40	60	
SW-100-3-042-trial3	100	100	0.0202	7	31	-	-	-	31	31	31	49	49	74	
SW-100-4-0d1-trial1	100	200	0.0404	7	7	-	-	-	9	10	9	14	14	19	
SW-100-4-0d1-trial2	100	200	0.0404	7	7	-	-	-	8	9	8	13	14	18	
SW-100-4-0d1-trial3	100	200	0.0404	7	9	-	-	-	10	11	10	15	16	20	
SW-100-4-042-trial1	100	200	0.0404	7	7	-	-	-	8	9	8	12	13	17	
SW-100-4-042-trial2	100	200	0.0404	7	7	-	-	-	8	9	9	12	13	16	
SW-100-4-042-trial3	100	200	0.0404	7	7	-	-	-	9	9	9	12	13	17	
SW-100-4-043-trial1	100	200	0.0404	7	6	-	-	-	8	9	8	12	13	16	
SW-100-4-043-trial2	100	200	0.0404	7	6	-	-	-	8	8	8	11	12	15	
SW-100-4-043-trial3	100	200	0.0404	7	7	-	-	-	8	9	8	11	12	15	
SW-100-5-0d1-trial1	100	200	0.0404	7	8	-	-	-	9	10	9	14	15	19	
SW-100-5-0d1-trial2	100	200	0.0404	7	9	-	-	-	10	11	10	15	15	22	
SW-100-5-0d1-trial3	100	200	0.0404	7	11	-	-	-	12	13	12	15	16	21	
SW-100-5-042-trial1	100	200	0.0404	7	8	-	-	-	9	10	10	13	14	17	
SW-100-5-042-trial2	100	200	0.0404	7	9	-	-	-	9	10	10	12	13	17	
SW-100-5-042-trial3	100	200	0.0404	7	7	-	-	-	8	9	9	12	13	18	
SW-100-5-0d3-trial1	100	200	0.0404	7	6	-	-	-	8	8	8	11	12	15	
SW-100-5-0d3-trial2	100	200	0.0404	7	6	-	-	-	8	8	8	11	12	16	
SW-100-5-043-trial3	100	200	0.0404	7	6	-	-	-	8	8	8	11	12	15	
SW-100-6-0d1-trial1	100	300	0.0606	7	5	-	-	-	7	8	8	12	13	16	
SW-100-6-0d1-trial2	100	300	0.0606	7	6	-	-	-	8	9	8	12	13	16	
SW-100-6-0d1-trial3	100	300	0.0606	7	6	-	-	-	7	8	8	12	14	17	
SW-100-6-0d2-trial1	100	300	0.0606	7	6	-	-	-	7	8	7	11	13	15	
SW-100-6-0d2-trial2	100	300	0.0606	7	4	-	-	-	7	8	7	10	12	14	
SW-100-6-0d2-trial3	100	300	0.0606	7	4	-	-	-	7	8	7	10	12	15	
SW-100-6-0d3-trial1	100	300	0.0606	7	4	-	-	-	7	8	7	10	11	14	
SW-100-6-0d3-trial2	100	300	0.0606	7	5	-	-	-	7	8	7	10	11	13	
SW-100-6-0d3-trial3	100	300	0.0606	7	5	-	-	-	7	8	7	10	11	14	

Outline

Introduction

- 2 Preliminaries and Literature Review
- Optimal broadcasting in Fully-Connected Trees
- 4 A Broadcasting Heuristic for Hypercube of Trees
- 5 Fully-adaptive Model for Broadcasting with Universal Lists
- 6 Non-adaptive Broadcasting
- 7 Broadcast Graphs under the Fully-adaptive Model
- \delta HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

Conclusion

• For classical model:

 \diamond An exact algorithm for FCT_n ,

 \diamond A heuristic for HT_k .

Conclusion

- For classical model:
 - \diamond An exact algorithm for FCT_n ,
 - \diamond A heuristic for HT_k .
- Suggesting fully-adaptive model:
 - \diamond *mbg*'s for $n \leq 10$,
 - \diamond bg's for $11 \leq n \leq 14$,
 - ◊ The first infinite family of bg's under universal lists model,
 - ♦ Exact value of $B_{fa}(G)$ for: trees, grids, hypercubes, cube connected cycles.
 - ♦ Upper bound on $B_{fa}(G)$ for tori.

- For non-adaptive model,
 - ♦ Exact value of $B_{na}(G)$ for: k-ary trees, binomial trees,
 - \diamond Upper bound on $B_{na}(G)$ for complete bipartite graph,
 - ♦ A general upper bound for trees.

- For non-adaptive model,
 - ♦ Exact value of $B_{na}(G)$ for: k-ary trees, binomial trees,
 - \diamond Upper bound on $B_{na}(G)$ for complete bipartite graph,
 - $\diamond\,$ A general upper bound for trees.
- HUB-GA

 $\diamond\,$ The first heuristic for the problem of broadcasting with universal lists.

Future Works

• Chapter 3: close the gap between the obvious lower bound $\Omega(|V|)$ and the current algorithm $O(|V| \log \log n)$.

Future Works

- Chapter 3: close the gap between the obvious lower bound $\Omega(|V|)$ and the current algorithm $O(|V| \log \log n)$.
- Chapter 4: replace hypercube with other graphs with known broadcast time,

Future Works

- Chapter 3: close the gap between the obvious lower bound $\Omega(|V|)$ and the current algorithm $O(|V| \log \log n)$.
- Chapter 4: replace hypercube with other graphs with known broadcast time,
- Chapter 5:
 - Broadcast time of many networks are still unknown under the fully-adaptive model,
 - Improving the current upper bound on complete graphs,
 - $\diamond\,$ Studying the widest margin between a graph's classical and fully-adaptive broadcast time on n vertices
 - ♦ Studying the hardness of the problem.

Future Works - cont.

• Chapter 6: broadcast time of different interconnection networks under non adaptive model.

Future Works - cont.

- Chapter 6: broadcast time of different interconnection networks under non adaptive model.
- Chapter 7:
 - \diamond Finding *mbg*'s and *bg*'s for greater values of *n*,
 - ♦ Is there any value of *n*, for which $B^{(cl)}(n) < B^{(fa)}(n)$?
 - ◇ Defining *bg*'s for adaptive and non-adaptive models (where the reachability of the obvious lower bound of $\lceil \log n \rceil$ is questionable).

Future Works - cont.

- Chapter 6: broadcast time of different interconnection networks under non adaptive model.
- Chapter 7:
 - \diamond Finding *mbg*'s and *bg*'s for greater values of *n*,
 - ♦ Is there any value of *n*, for which $B^{(cl)}(n) < B^{(fa)}(n)$?
 - ♦ Defining *bg*'s for adaptive and non-adaptive models (where the reachability of the obvious lower bound of $\lceil \log n \rceil$ is questionable).
- Chapter 8:
 - Experiments on more data,
 - ♦ Trying different algorithms such as Ant Colony or particle swarm optimization,
 - Proposing a similar approach for minimizing B_{cl}(G), not for a particular vertex!

Publications

- Chapter 3:
 - Gholami, S., Harutyunyan, H. A., & Maraachlian, E. (2022). Optimal Broadcasting in Fully Connected Trees. *Journal of Interconnection Networks*, 2150037.
- Chapter 4:
 - Gholami, S., & Harutyunyan, H. A. (2021). A Broadcasting Heuristic for Hypercube of Trees. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0355–0361).
- Chapter 5:
 - Gholami, S., & Harutyunyan, H. A. (2022b). Fully-adaptive Model for Broadcasting with Universal Lists. In 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).

Publications - cont.

- Chapter 6:
 - Gholami, S., & Harutyunyan, H. A. (2022d). A Note on Non-adaptive Broadcasting with Universal Lists. Special issue on Graph and Combinatorial Optimization for Big Data Intelligence with Parallel Processing, Parallel Processing Letters (Under Review).
- Chapter 7:
 - ◊ Gholami, S., & Harutyunyan, H. A. (2022a). Broadcast Graphs with Nodes of Limited Memory. In 13th International Conference on Complex Networks (CompleNet).
- Chapter 8:
 - Gholami, S., & Harutyunyan, H. A. (2022c). HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm. *Journal of Communications and Networks* (Accepted).

- In collaboration with other researchers:
 - Bakhtar, S., Gholami, S., & Harutyunyan, H. A. (2020). A new metric to evaluate communities in social networks using geodesic distance. In International Conference on Computational Data and Social Networks (CSoNet) (pp. 202–216).
 - Gholami, S., Saghiri, A. M., Vahidipour, S., & Meybodi, M. (2021). HLA: a novel hybrid model based on fixed structure and variable structure learning automata. *Journal of Experimental & Theoretical Artificial Intelligence*, 1–26.

Thanks a bunch!