

BROADCAST GRAPHS WITH NODES OF LIMITED MEMORY

By Saber Gholami & Hovhannes A. Harutyunyan

Introduction

- Background and Literature Review
- Comparison of universal list and messy broadcasting
- Broadcast graphs under the fully-adaptive model
- Conclusion and Future works

Introduction

- Background and Literature Review
- Comparison of universal list and messy broadcasting
- Broadcast graphs under the fully-adaptive model
- Conclusion and Future works

Introduction

- Computer networks are becoming more popular each day!
- One problem: Propagate a message
- Information dissemination:
 - Unicasting,
 - Broadcasting,
 - Multicasting,

•

Introduction – cont.'

- Broadcasting is the process of distributing a message from a single node (originator) to all other nodes of the network,
- Each call is performed during one unit of time,
- Several calls could be performed in parallel,
- Three branches:
 - Classical broadcasting,
 - Broadcasting with Universal lists,
 - Messy broadcasting,

- Introduction
- Background and Literature Review
- Comparison of universal list and messy broadcasting
- Broadcast graphs under the fully-adaptive model
- Conclusion and Future works

Background & Literature Review

• Classical broadcasting $B_{cl}(G)$:

- \circ Consider vertex u as the originator,
- \circ Once a vertex v receives the message it will use its list l_v^u ,
- And pass the information to its uninformed neighbors following the order of its list.
- The vital issue with the classical model:
 - The lists differ for various originators.
 - Each vertex must maintain several lists depending on the originator
- A vertex must maintain *V* different lists.

Background & Literature Review – cont.'

• Broadcasting with universal lists:

- Every vertex of the network is given a universal list,
- It has to follow the list, regardless of the originator.
- when a vertex v receives the message, it should transmit the message to its neighbors following the ordering given in its list l_v .
- Three sub-models:
 - Non-adaptive $B_{na}(G)$: skipping no vertex on the list,
 - Adaptive $B_a(G)$: skipping the vertices that a vertex received the message from that vertex,
 - Fully-adaptive $B_{fa}(G)$: skipping all informed neighbors.

Background & Literature Review – cont.'

• Broadcasting with universal lists:

- \circ Denote all possible schemes by Σ ,
- Model $M \in \{na, a, fa\}$,
- For a scheme $\sigma \in \Sigma$: $B^{\sigma}_{M}(v, G)$: time steps needed to inform all the vertices in G from the source v while following the scheme σ under model M.
- $B_M^{\sigma}(G) = \max_{v \in V} \{ B_M^{\sigma}(v, G) \}$ $B_M(G) = \min_{\sigma \in \Sigma} \{ B_M^{\sigma}(G) \}$

Background & Literature Review – cont.'

Messy broadcasting:

- every informed vertex randomly chooses a neighbor and sends the message.
- Three sub-models:
 - Model M_1 : once a vertex gets informed, it only has to send the message to its <u>uninformed neighbors</u> in some arbitrary order.
 - Model M₂: once vertex v gets informed, it will randomly send the message to the neighbors who have not sent it to v before.
 - Model M₃: a vertex will send the message to <u>all of its neighbors</u> in an arbitrary order once it gets informed.
- The broadcast time of a vertex v under model M_i is denoted by $t_i(v)$ for i = 1,2,3:
 - maximum number of time units required to complete broadcasting originating from vertex v over all possible broadcast schemes.

$$\circ t_i(G) = \max_{v \in V} \{t_i(v)\}$$

- Introduction
- Background and Literature Review
- Comparison of universal list and messy broadcasting
- Broadcast graphs under the fully-adaptive model
- Conclusion and Future works

Comparison of universal list and messy broadcasting

- Lemma 1. For any graph G:
 - $\circ \ B_{fa}(G) \leq t_1(G),$
 - $\circ \ B_a(G) \leq t_2(G),$
 - $B_{na}(G) \leq t_3(G)$,
- We also proved that these bounds are tight and cannot be improved in general.
- For any connected graph G with n vertices, m edges, diameter d(G), and the maximum degree of Δ :
- Corollary 1. $B_{na}(G) \leq 2m 1$ and $B_{fa}(G) \leq B_a(G) \leq m$.
- Corollary 2. $B_{na}(G) \leq d(G)$. Δ and $B_{fa}(G) \leq B_a(G) \leq d(G)$. $(\Delta 1) + 1$

- Introduction
- Background and Literature Review
- Comparison of universal list and messy broadcasting
- Broadcast graphs under the fully-adaptive model
- Conclusion and Future works

Broadcast graphs under the fully-adaptive model

- What is a broadcast graph (bg) ?
 - A graph G = (V, E) in which broadcasting could be completed within the minimum possible time starting from any originator.
 - In classical model: minimum time = $\lceil \log n \rceil$, for a graph with *n* vertices.
 - $\forall u \in V(G): B_{cl}(u, G) = \lceil \log n \rceil$
- What is a minimum broadcast graph (mbg) ?
 - \circ Is the *bg* with the minimum possible number of edges.
- $B^{(M)}(n)$: Broadcast function for an arbitrary value of n under model $M \in \{cl, fa\}$: • which is the number of edges associated with the mbg for n.
- Finding *mbg*'s is very difficult and quite vital with a lot of applications,
- It has only been done for M = cl.

Broadcast graphs under the fully-adaptive model - cont.

- $\circ mbg$'s for some values of $n \leq 16$ under fully-adaptive model:
- Lemma 2. If there is a graph G on n vertices for which $B_{fa}(G) = \lceil \log n \rceil$, then $B^{(cl)}(n) \leq B^{(fa)}(n)$.
- Corollary 3. Cycle C_n is *mbg* under fully-adaptive model for $4 \le n \le 6$.
- We also proved that the mbg's for classical broadcasting are also mbg's for the fullyadaptive model for n = 7,9,10.

Broadcast graphs under the fully-adaptive model - cont.

- This problem becomes more difficult for $n \ge 11$ under the fully-adaptive model:
 - Our exhaustive search on more than 4000 broadcast schemes on mbg's with n = 11, ..., 15 vertices did not result in a broadcast scheme that achieves $B_{fa}^{\sigma}(G) = 4$.
- But we obtained an upper bound on the value of $B_{fa}(n)$ for $11 \le n \le 14$.

Broadcast graphs under the fully-adaptive model - cont.'

Table 1. The known values of $B^{(fa)}(n)$ for n < 15

n \mid	3	4	5	6	7	8	9	10	11	12	13	14
Lower bound on $B^{(fa)}(n)$	2	4	5	6	8	12	10	12	13	15	18	21
Upper bound on $B^{(fa)}(n)$	2	4	5	6	8	12	10	12	15	17	23	23

Broadcast graphs under the fully-adaptive model - cont.

\circ General construction of bg's under fully-adaptive model:

- We created first infinite families of broadcast graphs under the fully-adaptive model for $n = 6 \times 2^k, 7 \times 2^k, 9 \times 2^k, 10 \times 2^k$ for any value of $k \ge 1$.
- Lemma 3. Consider a graph G = (V, E) with n vertices, m edges, and $B_{fa}(G) = \tau$. It is always possible to construct a graph G' = (V', E') with 2n vertices, 2m + n edges, and $B_{fa}(G) = \tau + 1$.
- Theorem 1. $(G, n, m, \tau) \rightarrow (G', 2n, 2m + n, \tau + 1)$.
- Corollary 5. $(G, n, m, \lceil \log n \rceil) \rightarrow (G', 2^k, n, 2^k, m + k, 2^{k-1}, n, \lceil \log n \rceil + k).$

Broadcast graphs under the fully-adaptive model - cont.

• Theorem 2. for any integer
$$k = \lceil \log n \rceil \ge 4$$
:
• $B^{(fa)}(n) = B^{(fa)}(2^{k-1} + 2^{k-4}) \le \frac{n\lceil \log n \rceil}{2} - \frac{8n}{9},$
• $B^{(fa)}(n) = B^{(fa)}(2^{k-1} + 2^{k-3}) \le \frac{n\lceil \log n \rceil}{2} - \frac{4n}{5},$
• $B^{(fa)}(n) = B^{(fa)}(2^{k-1} + 2^{k-2}) \le \frac{n\lceil \log n \rceil}{2} - \frac{n}{2},$
• $B^{(fa)}(n) = B^{(fa)}(2^{k-1} + 2^{k-2} + 2^{k-3}) \le \frac{n\lceil \log n \rceil}{2} - \frac{5n}{14},$

• Theorem 3. for a hypercube $H_d: B_{fa}(H_d) = d$

• Corollary 6. Hypercube H_d is an *mbg* on 2^d vertices under M = fa, and $B^{(fa)}(2^k) = k \cdot 2^{k-1}$ for any $k \ge 1$.

- Introduction
- Background and Literature Review
- Comparison of universal list and messy broadcasting
- Broadcast graphs under the fully-adaptive model
- Conclusion and Future works

Conclusion and Future works

- We proposed general upper bounds on the broadcast time of a graph *G* under the universal lists model,
- We studied broadcast graphs (*bg*)'s and minimum broadcast graphs (*mbg*)'s under the fully-adaptive model:
 - We presented mbg's on n vertices for $n \leq 10$,
 - And sparse bg's for $11 \le n \le 14$.
- Using our general construction, we suggested 4 infinite families of broadcast graphs under the fully-adaptive model,
- Lastly, we proved that Hypercube H_d is an mbg for any value of $n = 2^k$.

Conclusion and Future works- cont.'

- The problem of finding *mbg*'s and *bg*'s for greater values of *n* under universal lists models are still widely open,
- The broadcast time of several interconnection networks such as H_d are still unknown under adaptive and non-adaptive models.

