

Introduction

Problem Definition

Propose Heuristi MBS br

Evaluation

Setup Results

Conclusion and Future works

A Broadcasting Heuristic for Hypercube of Trees

Saber Gholami

IEEE CCWC 2021 11th Annual Computing and Communication Workshop and Conference

27-30 January 2021, USA

1 Introduction

2 Problem Definition

3 Proposed Heuristic

Introduction

Problem Definition

Propose Heuristic MBS br

Evaluation

Setup Results

Conclusion and Future works ④ Evaluation Setup Results

MBS

br

Introduction

Problem Definition

Propose Heuristi MBS br

Evaluation

Setup Results

Conclusion and Future works

Introduction

Problem Definition

Proposed Heuristic MBS br

Setup

Introduction

Problem Definition

Proposed Heuristic MBS br

Evaluation

Setup Results

Conclusion and Future works

- Computer networks are becoming more popular each day!
- One problem: Propagate a message
- Information dissemination:
 - ◊ Unicasting,
 - Broadcasting,
 - ♦ Multicasting,

 $\diamond \cdots$

Introduction

Introduction - cont.

Introduction

Problem Definition

Propose Heuristic MBS br

Evaluation

Setup Results

- Broadcasting is the process of distributing a message from a single node (*originator*) to all other nodes of the network,
 - Each *call* is performed during one unit of time,
 - Several calls could be performed in parallel,
 - We focus on broadcasting in a useful architecture, namely Hypercube of Trees

Problem Definition

MBS hr

Setup Results

2 Problem Definition

Problem Definition

Introduction

Problem Definition

Propose Heuristi MBS br

Evaluation

Setup Results

- Given: G(V, E), originator u,
- Calculate b(u, G)
 - ◇ NP-Complete in arbitrary graphs [5],
 - ♦ NP-Hard to approximate within a ratio of (3ε) for any $\varepsilon > 0$ [3].
 - ◊ Solved optimally for only a few networks,
 - ♦ A long list of heuristics and approximation algorithms!

Problem Definition - cont.

Introduction

Problem Definition

Proposed Heuristic

br

Evaluation

Setup Results

- A Hypercube of Trees HT_k :
 - \diamond A hypercube of dimension k +
 - \diamond 2^k arbitrary trees.
- Very useful structure:
 - ◊ Distributing data [4],
 - Simultaneous exchange of packets between processors [1],
 ...
- Current upperbound: (2ε) -approximation [2]

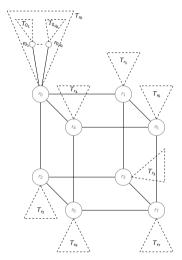


Figure: HT_3 , A hypercube of trees with dimension 3

Introduction

Problem Definition

Proposed Heuristic

MBS br

Evaluation

Setup Results

Conclusion and Future works

Introduction

Problem Definition

3 Proposed Heuristic MBS br

Evaluation Setup Results

Proposed Heuristic

Introduction

Problem Definition

Proposed Heuristic

MBS br

Evaluation

Setup Results

- Instead of finding b(u, G), solve this:
 - ♦ $b(u, G) \leq \tau$?

Proposed Heuristic

Introduction

Problem Definition

Proposed Heuristic

MBS br

Evaluation

Setup Results

- Instead of finding b(u, G), solve this:
 - ♦ $b(u, G) \leq \tau$?
 - Already know the upper bound and lower bound:

$$\underbrace{\max\left\{k, \max_{0 \le i \le 2^{k}-1}\left\{b(r_{i}, T_{i})\right\}\right\}}_{lb} \le b(u, HT_{k}) \le \underbrace{k + \max_{0 \le i \le 2^{k}-1}\left\{b(r_{i}, T_{i})\right\}}_{ub}$$

Proposed Heuristic

Introduction

Problem Definition

Proposed Heuristic

MBS br

Evaluation

Setup Results

Conclusion and Future works

- Instead of finding b(u, G), solve this:
 - ◊ $b(u, G) \le \tau$?
 - Already know the upper bound and lower bound:

$$\diamond \underbrace{\max\left\{k, \max_{0 \leq i \leq 2^{k}-1}\left\{b(r_{i}, T_{i})\right\}\right\}}_{lb} \leq b(u, HT_{k}) \leq \underbrace{k + \max_{0 \leq i \leq 2^{k}-1}\left\{b(r_{i}, T_{i})\right\}}_{ub}$$

• $b(r_i, T_i)$: broadcast time of vertex r_i within Tree T_i

◊ Available prior to the execution [5].

Proposed Heuristic

Introduction

Problem Definition

Proposed Heuristic

MBS br

Evaluation

Setup Results

Conclusion and Future works

- Instead of finding b(u, G), solve this:
 - ♦ $b(u, G) \leq \tau$?
 - Already know the upper bound and lower bound:

 $\diamond \underbrace{\max\left\{k, \max_{0 \leq i \leq 2^{k}-1}\left\{b(r_{i}, T_{i})\right\}\right\}}_{lb} \leq b(u, HT_{k}) \leq \underbrace{k + \max_{0 \leq i \leq 2^{k}-1}\left\{b(r_{i}, T_{i})\right\}}_{ub}$

- $b(r_i, T_i)$: broadcast time of vertex r_i within Tree T_i
 - ◊ Available prior to the execution [5].
- Do a binary search on this range (MBS).
 - ◊ Invoke the main heuristic (*br*) within this function.

Proposed Heuristic - MBS

In				

```
Problem
Definition
```

```
Proposed
Heuristic
```

```
MBS
br
```

```
Evaluation
```

```
Setup
Results
```

Conclusion an Future works Algorithm 1 The Modified Binary Search MBS(G, r_i, lb, ub)

input : $HT_k = (V, E)$, originator r_i , lower bound *lb*, and the upper bound *ub* **output**: An improved broadcast time for $b(r_i, HT_k)$ denoted by bb = ub

if *ub* < *lb* then return *FALSE*

```
end
```

```
 \begin{array}{l} \textit{mid} = \textit{lb} + \lfloor \frac{\textit{ub-lb}}{2} \rfloor \\ \textit{if } \textit{br}(\textit{HT}_k, \textit{r}_i, \textit{mid}) \textit{ then} \\ \mid \textit{update } \textit{b} = \textit{mid} \\ \mid \textit{return } \textit{MBS}(\textit{G}, \textit{r}_i, \textit{lb}, \textit{mid} - 1) \\ \textit{else} \\ \mid \textit{return } \textit{MBS}(\textit{G}, \textit{r}_i, \textit{mid} + 1, \textit{ub}) \\ \textit{end} \\ \textit{return } \textit{b} \\ \end{array}
```

Proposed Heuristic - br

Introduction

Problem Definition

Proposed Heuristic

br

Evaluation

Setup Results

Conclusion and Future works • Considering a root vertex r_i at time t:

$$\diamond \ b(r_i, T_i) > \tau - t:$$

return FALSE!

$$\diamond \ b(r_i, T_i) = \tau - t:$$

 \cdot r_i broadcasts in its tree T_i .

 $\diamond \ b(r_i, T_i) < \tau - t:$

 \cdot r_i must contribute in the Hypercube...

Proposed Heuristic - br - cont.

Introduction

- Problem Definition
- Proposed Heuristic
- br

Evaluation

Setup Results

- We want to send a message from a root vertex r_i to another root vertex r_j
 - Two questions must be answered:
 - How to choose r_j ?
 - ♦ The one with the minimum value of rem_{r_i} :

$$\mathit{rem}_{\mathit{r_j}} = \tau - t - \mathit{b}(\mathit{r_j}, \mathit{T_j}) - \mathit{dist}(\mathit{r_j}, \mathit{V_l})$$

Proposed Heuristic - br - cont.

Introduction

- Problem Definition
- Proposed Heuristic
- br

Evaluation

Setup Results

- We want to send a message from a root vertex r_i to another root vertex r_j
 - Two questions must be answered:
 - How to choose r_j ?
 - ♦ The one with the minimum value of rem_{r_i} :

$$rem_{r_j} = au - t - b(r_j, T_j) - dist(r_j, V_I)$$

- How to choose a path between r_i and r_j ?
 - A path P with the minimum value of c_P and d_P:
 c_P = min_{rm∈P}{rem_{rm}}
 d_P = ∑_{rm∈P} rem_{rm}
 More "critical" vertices on such a path!

Introduction

Problem Definition

Propose Heuristi MBS br

Evaluation

Setup Results

Conclusion and Future works

Introduction

Problem Definition

Proposed Heuristic MBS br

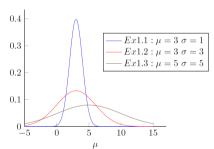
4 Evaluation Setup Results

Evaluation - Setup

• Generate 1000 random HT_k for each k.

♦ Following Gaussian distribution
$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Introduction


Problem Definition

Proposed Heuristic

MBS br

Evaluati

Setup Results

- In terms of:
 - ◊ success rate: How many times we performed better than [2]?
 - ◇ *gain*: How much better?
 - $\diamond |V|$

IEEE

Evaluation - Ex1.1

Introduction

Problem Definition

Propose Heuristic

br

Evaluation

Setup Results

Conclusion

Table: Numerical Results for Ex1.1: $\mu = 3, \sigma = 1$

k	average $ V $	success rate	average gain
3	115.86	29.79%	7.55%
4	233.55	28.49%	5.84%
5	466.09	21.3%	3.71%
6	932.49	5.7%	0.85%
7	1862.98	1.3%	0.16%
8	3729.59	0.2%	0.02%

Evaluation - Ex1.2

Introduction

Problem Definition

Propose Heuristic

br

Evaluation

Setup Results

Conclusion a

Table: Numerical Results for Ex1.2: $\mu = 3, \sigma = 3$

k	average $ V $	success rate	average gain
3	614.28	73.5%	24.45%
4	1189.54	78.6%	23.31%
5	2481.77	74.5%	19.81%
6	5008.22	69.2%	15.55%
7	10003.63	63.2%	12.5%
8	19927.99	54.7%	9.76%

Evaluation - Ex1.3

Introduction

Problem Definition

Propose Heuristic

br

Evaluation

Setup Results

Conclusion

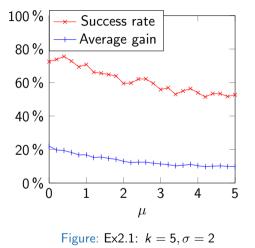
Table: Numerical Results for Ex1.3: $\mu = 5, \sigma = 5$

k	average $ V $	success rate	average gain
3	185255.48	81.20%	28.65%
4	280823.85	86.00%	28.82%
5	704372.23	88.10%	27.35%
6	1313690.28	89.30%	26.70%
7	3532669.06	90.50%	25.85%
8	5245921.21	90.10%	24.10%

IEEE

Evaluation - Ex2.1

Introduction


Problem Definition

Proposed Heuristic MBS

br

Evaluation

Setup Results

IEEE

Evaluation - Ex2.2

Introduction

Problem Definition

Proposed Heuristic MBS

br

Evaluation

Setup Results

Conclusion an Future works

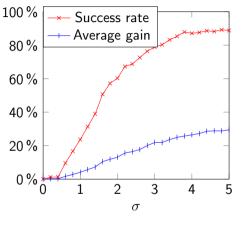


Figure: Ex2.2: $k = 5, \mu = 2$

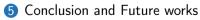
Introduction

Problem Definition

Propose Heuristi MBS br

Evaluation

Setup Results


Conclusion and Future works

Problem Definition

Proposed Heuristic MBS br

Setup Result

Conclusion

Introduction

Problem Definition

Proposed Heuristic MBS br

Evaluation

Setup Results

- We proposed a heuristic for broadcasting in a hypercube of trees.
- Theoretically:
 - ◊ 2-approximation
- Practically:
 - $\diamond\,$ outperform the best-known algorithm for the same problem in up to 90% of the experiments while speeding up the process up to 30%

ntroduction

- Problem Definition
- Proposed Heuristic MBS br

Evaluation

Setup Results

Conclusion and Future works

- Performance of the heuristic in real-world data sets,
- Approximability of this problem

Future works

- Proposing additive approximation algorithm,
- $\diamond~$ Or proving the NP-Completeness of the problem.
- Replace the hypercube with any other class of graphs
 - In which the broadcast scheme and broadcast time are known.

Important References I

Introduction

Problem Definition

Proposed Heuristic MBS br

Evaluation

Setup Results

Conclusion and Future works Dimitri P Bertsekas, C Özveren, George D Stamoulis, Paul Tseng, and John N Tsitsiklis.
 Optimal communication algorithms for hypercubes.

Journal of Parallel and Distributed computing, 11(4):263–275, 1991.

[2] Puspal Bhabak and Hovhannes A Harutyunyan. Broadcast problem in hypercube of trees.

In *International Workshop on Frontiers in Algorithmics*, pages 1–12. Springer, 2014.

[3] Michael Elkin and Guy Kortsarz.

A combinatorial logarithmic approximation algorithm for the directed telephone broadcast problem.

SIAM journal on Computing, 35(3):672-689, 2005.

Important References II

Introduction

Problem Definition

Propose Heuristic MBS br

Evaluation

Setup Results

Conclusion and Future works

[4] Ching-Tien Ho and S Lennart Johnsson.

Distributed routing algorithms for broadcasting and personalized communication in hypercubes.

In ICPP, pages 640-648, 1986.

[5] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing, 10(4):692–701, 1981.

MBS

Setup Results

hr

